
THE PH.D. GRIND
A Ph.D. Student Memoir

Philip J. Guo

philip@pgbovine.net

Third Anniversary Reprint

with margin notes from the perspective of a first-year assistant professor

To read the original version without margin notes, visit:

http://www.pgbovine.net/PhD-memoir.htm

Current release: May 28, 2015

Original release: July 16, 2012

Copyright Philip J. Guo

To the unexpected.

Contents

Prologue 1

Year One: Downfall 5

Year Two: Inception 21

Year Three: Relapse 33

Intermission 45

Year Four: Reboot 53

Year Five: Production 69

Year Six: Endgame 85

Epilogue 99

Preface

This book chronicles my six years of working towards a Ph.D. in com- These margin notes are
written in mid-2015, three
years after The Ph.D.
Grind was published.
At this time, I have just
finished my first year
as an assistant professor
of computer science, so
these notes reflect my
current opinions as a
new faculty member.
To download a version
without these notes, visit
http://pgbovine.net/

PhD-memoir.htm

These margin notes are
written in mid-2015, three
years after The Ph.D.
Grind was published.
At this time, I have just
finished my first year
as an assistant professor
of computer science, so
these notes reflect my
current opinions as a
new faculty member.
To download a version
without these notes, visit
http://pgbovine.net/

PhD-memoir.htm

puter science at Stanford University from 2006 to 2012. A diverse

variety of people can benefit from reading it, including:

• undergraduates who might be interested in pursuing a Ph.D.,

• current Ph.D. students who are seeking guidance or inspiration,

• professors who want to better understand Ph.D. students,

• employers who hire and manage people with Ph.D. degrees,

• professionals working in any creative or competitive field where

self-driven initiative is crucial,

• and educated adults (or precocious kids) who are curious about

how academic research is produced.

The Ph.D. Grind differs from existing Ph.D.-related writings due

to its unique format, timeliness, and tone:

Format – The Ph.D. Grind is a memoir for a general educated

audience, not a “how-to guide” for current Ph.D. students. Although

Ph.D. students can glean lessons from my experiences, my goal is

not to explicitly provide advice. There are plenty of how-to guides

and advice columns for Ph.D. students, and I am not interested in

contributing to the fray. These articles are filled with generalities

v

http://pgbovine.net/PhD-memoir.htm
http://pgbovine.net/PhD-memoir.htm
http://pgbovine.net/PhD-memoir.htm
http://pgbovine.net/PhD-memoir.htm

such as “be persistent” and “make some progress every day,” but an

advantage of the memoir format is that I can be concrete and detailed

when telling my own story.

Timeliness – I wrote The Ph.D. Grind immediately after finish-I already have selective
hindsight, and I’ve been
out for only three years.
I’m so glad that I wrote
this book right when I
graduated. There’s no
way I can recapture those
raw feelings ever again.

I already have selective
hindsight, and I’ve been
out for only three years.
I’m so glad that I wrote
this book right when I
graduated. There’s no
way I can recapture those
raw feelings ever again.

ing my Ph.D., which is the ideal time for such a memoir. In contrast,

current Ph.D. students cannot reflect on the entirety of their experi-

ences like I can, and senior researchers who attempt to reflect back on

their Ph.D. years might suffer from selective hindsight.

Tone – Although it’s impossible to be unbiased, I try to maintain a

balanced tone throughout The Ph.D. Grind. In contrast, many people

who write Ph.D.-related articles, books, or comics are either:

• successful professors or research scientists who pontificate stately

advice, adopting the tone of “grad school is tough, but it’s a

delectable intellectual journey that you should enjoy and make

the most of . . . because I sure did!”

• or bitter Ph.D. graduates/dropouts who have been traumatized

by their experiences, adopting a melodramatic, disillusioned,

self-loathing tone of “ahhh my world was a living hell, what did

I do with my life?!?”

Stately advice can motivate some students, and bitter whining

might help distressed students to commiserate, but a general audi-

ence will probably not be receptive to either extreme.

Finally, before I begin my story, I want to emphasize that there is aI cannot emphasize this
point enough. I enjoyed
a ton of privilege during
my Ph.D., most notably
because I was almost
fully-funded by fellow-
ships and attended a
top-tier school. My ex-
perience would have
differed greatly if that
was not the case.

I cannot emphasize this
point enough. I enjoyed
a ton of privilege during
my Ph.D., most notably
because I was almost
fully-funded by fellow-
ships and attended a
top-tier school. My ex-
perience would have
differed greatly if that
was not the case.

great deal of diversity in Ph.D. student experiences depending on one’s

school, department, field of study, and funding situation. I feel very

fortunate that I have been granted so much freedom and autonomy

throughout my Ph.D. years; I know students who have experienced

far more restrictions. My story is only a single data point, so what

I present might not generalize. However, I will try my best to avoid

being overly specific. Happy reading!

Philip Guo, June 2012So much has changed
in the past three years.
I’ve held four jobs since
writing this book: soft-
ware engineer at Google,
visiting researcher at edX,
postdoc at MIT, and now
assistant professor at the
University of Rochester.

So much has changed
in the past three years.
I’ve held four jobs since
writing this book: soft-
ware engineer at Google,
visiting researcher at edX,
postdoc at MIT, and now
assistant professor at the
University of Rochester.

Prologue

Since I majored in Electrical Engineering and Computer Science in

college, the majority of my classmates started working in engineering

jobs immediately after graduating with either a bachelor’s or master’s

degree. I chose to pursue a Ph.D. instead due to a combination of

subliminal parental influences and my own negative experiences with

engineering internships throughout college.

My parents never pressured me to pursue a Ph.D., but I could tell

that the job they respected the most was that of a tenured university

professor, and a Ph.D. was required for that job. Why was being a

professor regarded as their golden ideal? It wasn’t due to some lofty

reverence for the purity of scholarly pursuits. Although my parents

respected intellectuals, they were highly pragmatic immigrants who

were more captivated by the lifetime job security offered by a tenured

professorship.

Many of my parents’ friends were Chinese immigrants who worked

in corporate engineering jobs. Due to their weak English language

skills and lack of American cultural literacy, they mostly had negative

experiences throughout their engineering careers, especially as they

grew older. At holiday parties, I would constantly hear jaded-sounding

stories of people suffering under oppressive managers, encountering age

discrimination and “glass ceiling” effects, and facing massive rounds

of layoffs followed by prolonged unemployment. Although my father

was not an engineer, he worked in the high-tech sector and had similar

1

2 The Ph.D. Grind

tales of struggling with management and bureaucracy, culminating in

his final corporate layoff at the relatively young age of 45.

My mother was the only exception to this dismal trend. She loved

her job as a tenured professor of sociology at UCLA. Unlike most

of her Chinese immigrant friends, she enjoyed lifetime job security,

never needed to report to a boss, could pursue her own intellectual

interests with nearly full freedom, and was famous within her academic

field. Seeing the stark contrast between my mother’s successful career

trajectory and the professional downward spirals of my father and

many of their friends made a lasting impression on me throughout my

high school and college years.

Of course, it would be foolish to pursue a Ph.D. solely out of ir-

rational childhood fears. To get a preview of corporate working life,

I did internships at engineering companies every summer during col-

lege. Since I happened to work in offices where I was the only intern,

I was given the full responsibilities of a junior engineer, which was

a rare privilege. Although I learned a lot of technical skills, I found

the day-to-day work to be mind-numbingly dull. My coworkers were

also unenthusiastic about their jobs, and there were few appealing

prospects for career advancement. Of course, I’m not claiming that

all engineering jobs are mind-numbingly dull; it just happened that

the companies I worked for were not first-rate. Many of my college

friends who interned at first-rate companies such as Microsoft and

Google loved their experiences and signed on to work at those compa-Ironically, my first full-
time job after finishing
my Ph.D. was at Google.

Ironically, my first full-
time job after finishing
my Ph.D. was at Google. nies full-time after graduation.

Since I felt bored by my engineering internships and somewhat en-

joyed my time as an undergraduate teaching and research assistant

back in college, I set my sights on university-level teaching and aca-

demic research as future career goals. By the middle of my third yearLate one night, I wrote
a shockingly-resolute
diary entry that professed
my dedication toward
this future goal. It even
listed Stanford as my top
choice school.

Late one night, I wrote
a shockingly-resolute
diary entry that professed
my dedication toward
this future goal. It even
listed Stanford as my top
choice school.

of college at MIT, I had made up my mind to pursue a Ph.D. degree

since it was required for those kinds of jobs. I planned to stay at MIT

for a five-year combined bachelor’s and master’s program, since that

Prologue 3

would give me more research experience before applying to Ph.D. pro-

grams and hopefully increase my chances of admissions into top-ranked

departments.

I found a master’s thesis advisor and, like any ambitious kid, began

proposing my own half-baked quasi-research project ideas to him. My

advisor patiently humored me but ultimately persuaded me to work

on more mainstream kinds of research that fit both his academic inter-

ests and, more importantly, the conditions of his grant funding. Since

my master’s program tuition was partially paid for by a research grant

that my advisor had won from the U.S. government, I was obliged to

work on projects within the scope of that grant. Thus, I followed his

suggestions and spent two and a half years creating new kinds of pro-

totype tools to analyze the run-time behavior of computer programs

written in the C and C++ languages.

Although I wasn’t passionately in love with my master’s thesis Another benefit was the
opportunity to develop
serious programming
skills during those 2.5
years, which made it eas-
ier for me to implement
subsequent project ideas.

Another benefit was the
opportunity to develop
serious programming
skills during those 2.5
years, which made it eas-
ier for me to implement
subsequent project ideas.

project, it turned out that aligning with my advisor’s research inter-

ests was a wise decision: Under his strong guidance, I was able to

publish two papers—one where I was listed as the first (lead) author

and the other a latter author—and write a master’s thesis that won

the annual department Best Thesis Award. These accomplishments, If I had stubbornly in-
sisted on pursuing my
own half-baked quasi-
research ideas at that
time, I wouldn’t have
gotten these results.

If I had stubbornly in-
sisted on pursuing my
own half-baked quasi-
research ideas at that
time, I wouldn’t have
gotten these results.

along with my advisor’s help in crafting my application essays, won me

admissions into several top-ranked computer science Ph.D. programs.

Since Stanford was my top choice, I felt ecstatic and could barely sleep

during the night when I received my admissions notice.

I was also lucky enough to win the prestigious NSF and NDSEG Applying to Ph.D. pro-
grams and fellowships
during my master’s year
gave me a huge advan-
tage over students who
applied during senior
year of college, since
I had an extra year of
research experience.

Applying to Ph.D. pro-
grams and fellowships
during my master’s year
gave me a huge advan-
tage over students who
applied during senior
year of college, since
I had an extra year of
research experience.

graduate research fellowships, each of which was awarded to only

around five percent of all applicants. These two fellowships fully paid

for five out of the six years of my Ph.D. studies and freed me from

the obligations of working on specific grant-funded projects. In con-

trast, most Ph.D. students in my field are funded by a combination

of professor-provided grants and by serving as teaching assistants for

their department. Funding for Ph.D. students pays for university tu-

http://www.pgbovine.net/projects/pubs/abstract-type-issta2006.pdf
http://www.pgbovine.net/projects/pubs/infer-repair-issta2006.pdf
http://www.pgbovine.net/projects/pubs/guo-mixedlevel-mengthesis.pdf

4 The Ph.D. Grind

ition and also provides a monthly stipend of around $1,800 to cover

living expenses. (Almost nobody in my field pays their own money to

pursue a Ph.D. degree, since it’s not financially worthwhile to do so.)

Since I had a decent amount of research and paper writing experi-

ence, I felt well-prepared to handle the rigors of Ph.D.-level research

when I came to Stanford in September 2006. However, at the time, II looked so good on
paper when I started, yet
I still got crushed. Like
the age-old saying about
financial investments:
Past performance is not an
indicator of future results.

I looked so good on
paper when I started, yet
I still got crushed. Like
the age-old saying about
financial investments:
Past performance is not an
indicator of future results.

had absolutely no idea that my first year of Ph.D. would be the most

demoralizing and emotionally distressing period of my life thus far.

Year One: Downfall

In the summer of 2006, several months prior to starting my Ph.D. at

Stanford, I thought about ideas for research topics that I felt moti-

vated to pursue. In general, I wanted to create innovative tools to

help people become more productive when doing computer program-

ming (i.e., improving programmer productivity). This area of interest

arose from my own programming experiences during summer intern-

ships: Since my assigned day-to-day work wasn’t mentally stimulating,

I spent a lot of time in my cubicle reflecting on the inefficiencies in

the computer programming process at the companies where I worked.

I thought it would be neat to work on research that helps alleviate

some of those inefficiencies. More broadly, I was interested in research

that could help other types of computer users—not only professional

programmers—become more productive. For example, I wanted to de- It’s been a decade since
I first sketched out these
proto-ideas, but I still
think that this is a
promising area of re-
search. It’s interesting
how childhood interests
can morph into long-term
career motivations.

It’s been a decade since
I first sketched out these
proto-ideas, but I still
think that this is a
promising area of re-
search. It’s interesting
how childhood interests
can morph into long-term
career motivations.

sign new tools to assist scientists who are analyzing and graphing data,

system administrators who are customizing server configurations, or

novices who are learning to use new pieces of software.

Although I had these vague high-level interests back then, I was

still many years away from being able to turn them into legitimate

publishable research projects that could form a dissertation. To grad-

uate with a Ph.D. from the Stanford Computer Science Department,

students are expected to publish two to four related papers as the first This isn’t a hard-and-fast
rule, but more papers
means a smoother path
to graduation.

This isn’t a hard-and-fast
rule, but more papers
means a smoother path
to graduation.

(lead) author and then combine those papers together into a book-

length technical document called a dissertation. A student is allowed

5

6 The Ph.D. Grind

to graduate as soon as a three-professor thesis committee approves

their dissertation. Most students in my department take between four

to eight years to graduate, depending on how quickly they can publish.

At new student orientation in September 2006, professors in my

department encouraged all incoming Ph.D. students to find an advi-

sor as soon as possible, so my classmates and I spent the first few

months chatting with professors to try to find a match. The advisor is

the most important member of a student’s thesis committee and has

the final say in approving a student to graduate. In my field, advi-In other fields, such as
those in the humanities
and social sciences, stu-
dents are not directly
funded by their advisors.
This fact greatly alters
the advisor-advisee re-
lationship, making the
Ph.D. much more of a
solitary journey and less
of an employer-employee
arrangement.

In other fields, such as
those in the humanities
and social sciences, stu-
dents are not directly
funded by their advisors.
This fact greatly alters
the advisor-advisee re-
lationship, making the
Ph.D. much more of a
solitary journey and less
of an employer-employee
arrangement.

sors are responsible for providing funding for their students (usually

via research grants) and working with them to develop ideas and to

write papers. I met with a few professors, and the one whose research

interests and style seemed most closely related to mine was Dawson,

so I chose him as my advisor.

When I arrived on campus, Dawson was a recently-tenured pro-
I’ve been very happy
with my choice to iden-
tify people by only first
names in this book.
I didn’t want to use
pseudonyms since it’s
easy to discover who ev-
eryone is anyways. I also
didn’t want to use full
names, since some peo-
ple might not want this
book coming up on web
searches for their name
due to privacy concerns.

I’ve been very happy
with my choice to iden-
tify people by only first
names in this book.
I didn’t want to use
pseudonyms since it’s
easy to discover who ev-
eryone is anyways. I also
didn’t want to use full
names, since some peo-
ple might not want this
book coming up on web
searches for their name
due to privacy concerns.

fessor who had been at Stanford for the past eight years; professors

usually earn tenure (a lifetime employment guarantee) if they have

published enough notable papers in their first seven years on the job.

Dawson’s main research interest was in building innovative tools that

could automatically find bugs (errors in software code) in complex

pieces of real-world software. Over the past decade, Dawson and his

students built several tools that were able to find far more bugs than

any of their competitors. Their research techniques were so effectiveIn 2014, their startup,
Coverity, was acquired
by Synopsys, Inc. for
around $375 million.

In 2014, their startup,
Coverity, was acquired
by Synopsys, Inc. for
around $375 million.

that they created a successful startup company to sell software bug-

finding services based on those techniques. Although I somewhat liked

Dawson’s projects, what appealed more to me was that his research

philosophy matched my own: He was an ardent pragmatist who cared

more about achieving compelling results than demonstrating theoret-

ical “interestingness” for the sake of appearing scholarly.

During my first meeting with Dawson, he seemed vaguely inter-

ested in my broader goals of making computer usage and programming

more productive. However, he made it very clear that he wanted to

Year One: Downfall 7

recruit new students to work on an automatic bug-finding tool called

Klee that his grant money was currently funding. (The tool has had

several names, but I will call it “Klee” for simplicity.) From talking

with other professors and senior Ph.D. students in my department, I

realized it was the norm for new students to join an existing grant-

funded research project rather than to try creating their own original

project right away. I convinced myself that automatically finding soft-

ware bugs was an indirect way to make programmers more productive,

so I decided to join the Klee project.

When I started working on Klee in December 2006, Dawson was

supervising five other students who were already working on it. The

project leader, Cristi, was a third-year Ph.D. student who, together Cristi finished his Ph.D.
in 2009 and became an
assistant professor at
Imperial College London.

Cristi finished his Ph.D.
in 2009 and became an
assistant professor at
Imperial College London.

with Dawson, built the original version of Klee. Dawson, Cristi, and a

few other colleagues had recently coauthored and published their first

paper describing the basic Klee system and demonstrating its effec-

tiveness at finding new kinds of bugs. That paper was well-received

by the academic community, and Dawson wanted to keep up the mo-

mentum by publishing a few follow-up papers. Note that it’s possible

to publish more than one paper on a particular research project (i.e.,

follow-up papers), as long as each paper contains new ideas, improve-

ments, and results that are different enough from the previous ones.

The paper submission deadline for the next relevant top-tier conference

was in March 2007, so the Klee team had four months to create enough

innovations beyond the original paper to warrant a new submission.

∼

Before I continue my story, I want to briefly introduce how aca-

demic papers are peer-reviewed and published. In computer science,

the most prestigious venues for publishing papers are conferences.

Note that in many other academic disciplines, journals are the most

prestigious venues, and the word “conference” means something quite

8 The Ph.D. Grind

different. The computer science conference publication process works

roughly as follows:

1. Each conference issues a call for papers with a list of topics of

interest and a specific submission deadline.

2. Researchers submit their papers by that deadline. Each conference

typically receives 100 to 300 paper submissions, and each paper

contains the equivalent of 30 to 40 pages of double-spaced text.

3. The conference program committee (PC), consisting of around 20

expert researchers, splits up the submitted papers and reviews

them. Each paper is reviewed by three to five people, who are

either PC members or volunteer external reviewers solicited by PC

members. The review process takes about three months.

4. After everyone on the PC is done with their reviews, the PC meets

and decides which papers to accept and which to reject based on

reviewer preferences.

5. The PC emails all authors to notify them of whether their papers

have been accepted or rejected and attaches the written reviews to

the notification emails.

6. Authors of accepted papers attend the conference to give a 30-

minute talk on their paper. All accepted papers are then archived

online in a digital library.

A prestigious top-tier conference accepts 8 to 16 percent of sub-Acceptance rates vary a
lot by sub-field, so don’t
take these numbers too
literally.

Acceptance rates vary a
lot by sub-field, so don’t
take these numbers too
literally.

mitted papers, and a second-tier conference accepts 20 to 30 percent.

Due to these relatively low acceptance rates, it’s not uncommon for a

paper to be rejected, revised, and resubmitted several times before be-

ing accepted for publication—a process that might take several years.

(A paper can be submitted to only one conference at a time.)

Year One: Downfall 9

∼

After Dawson made it clear that he wanted to aim for that par-

ticular March 2007 top-tier conference submission deadline, he told

me what the other five students were currently working on and gave

options for tasks that I could attempt. I chose to use Klee to find

new bugs in Linux device drivers. A device driver is a piece of soft-

ware code that allows the operating system to communicate with a

hardware peripheral such as a mouse or keyboard. The Linux operat-

ing system (similar to Microsoft Windows or Apple Mac OS) contains

thousands of device drivers to connect it with many different kinds of

hardware peripherals. Bugs in device driver code are both hard to find

using traditional means and also potentially dangerous, because they

can cause the operating system to freeze up or crash.

Dawson believed that Klee could find new bugs that no automated

tool or human being had previously found within the code of thou-

sands of Linux device drivers. I remember thinking that although new

Linux device driver bugs could be cool to present in a paper, it wasn’t

clear to me how these results constituted a real research contribution.

From my understanding, I was going to use Klee to find new bugs—

an application of existing research—rather than improving Klee in an

innovative way. Furthermore, I couldn’t see how my project would fit Some new Ph.D. students
are thrown head-first
into large group projects
without receiving the
proper context for how
(or whether!) their efforts
fit into the big-picture
vision. That can feel
overwhelming and de-
moralizing.

Some new Ph.D. students
are thrown head-first
into large group projects
without receiving the
proper context for how
(or whether!) their efforts
fit into the big-picture
vision. That can feel
overwhelming and de-
moralizing.

together with the other five students’ projects into one coherent paper

submission in March. However, I trusted that Dawson had the high-

level paper writing strategy in his head. I had just joined the project,

so I didn’t want to immediately question these sorts of professor-level

decisions. I was given a specific task, so I wanted to accomplish it to

the best of my abilities.

10 The Ph.D. Grind

∼

I spent the first four months of my Ph.D. career painstakingly get-

ting Klee to analyze the code of thousands of Linux device drivers

in an attempt to find new bugs. Although my task was conceptually

straightforward, I was overwhelmed by the sheer amount of grimy de-

tails involved in getting Klee to work on device driver code. I would

often spend hours setting up the delicate experimental conditions re-

quired for Klee to analyze a particular device driver only to watch

helplessly as Klee crashed and failed due to bugs in its own code.

When I reported bugs in Klee to Cristi, he would try his best to ad-

dress them, but the sheer complexity of Klee made it hard to diagnose

and fix its multitude of bugs. I’m not trying to pick on Klee specifi-

cally: Any piece of prototype software developed for research purposes

will have lots of unforeseen bugs. My job was to use Klee to find bugs

in Linux device driver code, but ironically, all I ended up doing in the

first month was finding bugs in Klee itself. (Too bad Klee couldn’t

automatically find bugs in its own code!) As the days passed, I grew

more and more frustrated doing what I felt was pure manual labor—

just trying to get Klee to work—without any intellectual content.

This was the first time in my life that I had ever felt hopelessly

overwhelmed by a work assignment. In the past, my summer intern-

ship projects were always manageable, and although lots of schoolwork

in college was challenging, there was always a correct answer waiting

to be discovered. If I didn’t understand something in class, then teach-

ing assistants and more advanced students would be available to assist.

Even when doing research as an undergraduate, I could always ask my

mentor (who was then a fourth-year Ph.D. student) to help me, sinceStephen is now an as-
sistant professor of com-
puter science at the Uni-
versity of Minnesota.

Stephen is now an as-
sistant professor of com-
puter science at the Uni-
versity of Minnesota.

I worked on relatively simple problems that he usually knew how to

solve. The stakes were also lower as an undergraduate research assis-

tant, since research was only a small fraction of my daily schedule. If

I was stuck on a research task, then I could instead focus on class-

work or hang out with friends. My college graduation didn’t depend

Year One: Downfall 11

on excelling in research. However, now that I was a Ph.D. student,

research was my only job, and I wouldn’t be able to earn a degree

unless I succeeded at it. My mood was inextricably tied to how well

I was progressing every day, and during those months, progress was

painfully slow.

I was now treading in unfamiliar territory, so it was much harder

to seek help than during my undergraduate years when answers were

clear-cut. Since I was the only person trying to use Klee on device

driver code, my colleagues were unable to provide any guidance. Daw-

son gave high-level strategic advice from time to time, but like all As an advisor, it’s hard
to provide detailed guid-
ance when you’re not
getting your hands dirty
with the project code,
since you don’t have a
good feel for its idiosyn-
cratic technical details.
That’s why I still try
to stay as “close to the
grind” as time permits.

As an advisor, it’s hard
to provide detailed guid-
ance when you’re not
getting your hands dirty
with the project code,
since you don’t have a
good feel for its idiosyn-
cratic technical details.
That’s why I still try
to stay as “close to the
grind” as time permits.

tenured professors, his role was not to be “fighting in the trenches”

alongside his students. It was our job to figure out all of the intricate

details required to produce results—in my case, to find new bugs in

Linux device drivers that nobody had previously found. Professors

love to repeat the refrain, “If it’s already been done before, then it

wouldn’t be research!” For the first time, I viscerally felt the meaning

of those words.

Despite my daily feelings of hopelessness, I kept on telling myself:

I’m just getting started here, so I should be patient. I didn’t want to

appear weak in front of my advisor or colleagues, especially because

I was the youngest student in Dawson’s group. So I trudged forward

day after day for over 100 consecutive days, fixing Klee-related prob-

lems as they arose and then inevitably encountering newer and nastier

obstacles in my quest to find those coveted Linux device driver bugs.

During almost every waking moment, I was either working, think-

ing about work, or agonizing over how I was stuck on obscure technical

problems at work. Unlike a regular nine-to-five job (e.g., my summer

internships) where I could leave my work at the office and chill every

night in front of the television, research was emotionally and mentally

all-consuming. I found it almost impossible to shut off my brain and

relax in the evenings, which I later discovered was a common ailment

afflicting Ph.D. students. Sometimes I even had trouble sleeping due

12 The Ph.D. Grind

to stressing about how my assigned task was unbelievably daunting.

There was no way to even fathom taking a break because there was

so much work to do before the paper submission deadline in March.

In the midst of all of this manual labor, I tried to come up with

some semi-automated ways to make my daily grind less painful. I

discussed a few preliminary ideas with Dawson, but we ultimately

concluded that there was no way to avoid such time-consuming grind-

ing if we wanted Klee to find bugs in Linux device drivers. I had to

tough it out for a few more months until we submitted the paper.

My rational brain understood that experimental research in science

and engineering fields often involves a tremendous amount of unglam-

orous, grungy labor to produce results. Ph.D. students, especially

first- and second-years, are the ones who must bear the brunt of the

most tedious labor; it’s what we are paid to do. In a typical research

group, the professor and senior Ph.D. students create the high-level

project plans and then assign the junior students to grind on making

all of the details work in practice. First- and second-year students are

rarely able to affect the overall direction of the group’s project. Even

though I fully accepted my lowest rank on the pecking order, my emo-

tional brain still took a huge beating during those first few months

because the work was so damn hard and unrewarding.

∼

After two months of grinding, I began to win some small victories.

I got Klee working well enough to find my first few bugs in the smallest

device drivers. To confirm whether those bugs were real (as opposed

to false positives due to limitations of Klee), I sent emails describ-Learning to send succinct
and effective professional
emails has benefited my
career tremendously.

Learning to send succinct
and effective professional
emails has benefited my
career tremendously.

ing each potential bug to the Linux programmers who created those

drivers. Several driver creators confirmed that I had indeed found real

bugs in their code. I was very excited when I received those email

confirmations, since they were my first small nuggets of external val-

idation. Even though I wasn’t doing groundbreaking new research, I

Year One: Downfall 13

still felt some satisfaction knowing that my efforts led to the discovery

of new bugs that were difficult to find without a tool such as Klee.

My morale improved a bit after those first few bug confirmations

on the smallest device drivers, so I set my sights on trying to get Klee

to work on larger, more complex drivers. However, the new techni-

cal problems that arose in subsequent weeks became unbearable and

almost drove me to the point of burnout. Here is a summary of the

difficulties: Klee can effectively find bugs only in software that con-

tains less than approximately 3,000 lines of code (written in the C

language). The smallest Linux device drivers contain about 100 lines

of code, so they are well within Klee’s capabilities. Larger drivers

have about 1,000 lines of code but are intricately connected to 10,000

to 20,000 lines of code in other parts of the Linux operating system.

The resulting combination is far beyond Klee’s capabilities to ana-

lyze, since it’s impossible for Klee to “surgically extract” the code of

each device driver and analyze its 1,000 lines in isolation. I made I obviously had no idea
at the time, but my epic
struggles with software
dependencies would
inspire several of my
later Ph.D. projects.

I obviously had no idea
at the time, but my epic
struggles with software
dependencies would
inspire several of my
later Ph.D. projects.

various attempts to reduce the number of these external connections

(called dependencies), but doing so required several days of intricate

customized manual effort for each driver.

I met with Dawson to express my exasperation at the daunting

task that I was now facing. It seemed absurd to have to spend sev-

eral days to get Klee working with each new device driver. Not only

was it physically wearing me out, but it wasn’t even research! What

would I write about in our paper—that I had spent nearly 1,000 hours

of manual labor getting Klee to work on device drivers without ob-

taining any real insights? That wasn’t a research contribution; it just

sounded foolish. I also began to panic because there were only five

weeks left until the paper submission deadline, and Dawson had not

yet mentioned anything about our group’s paper writing strategy. It

usually takes at least four weeks to write up a respectable paper sub-

mission, especially when there are six students involved in the project

who need to coordinate their efforts.

14 The Ph.D. Grind

Several days after our meeting, Dawson came up with a plan for

improving Klee to overcome the dependency problems I was facing.

The new technique that he invented, called underconstrained execu-

tion (abbreviated “UC”), might allow Klee to “surgically extract” the

Linux device driver code from the 10,000 to 20,000 lines of surrounding

external code and thus analyze the drivers in isolation. He immedi-

ately set out to work with a senior student to incorporate the UC

technique into Klee; they called the improved version Klee-UC. Even

though I was exhausted and almost burned-out, I was glad that my

struggles at least motivated Dawson to invent a brand-new idea with

the potential to become a worthy research contribution.

Dawson and the other student spent the next few weeks working

on Klee-UC. In the meantime, they told me to keep trying to find

Linux device driver bugs the old-fashioned manual way. They planned

to show the effectiveness of Klee-UC by re-finding the bugs that I had

found manually using regular Klee. The argument they wanted to

make in the paper submission was that instead of having a Ph.D. stu-

dent (me!) tediously spend a few days setting up Klee to find each

bug, Klee-UC could automatically find all of those bugs in a matter

of minutes without any setup effort.

After grinding furiously for a few more weeks, I was ultimately

able to get the original Klee to analyze 937 Linux device drivers and

discover 55 new bugs (32 of which were confirmed by each respective

driver’s creator via email). I then had to set up the fledgling Klee-UC

tool to analyze those same 937 drivers, which was even more tricky

because Dawson and the other student were in the process of imple-

menting (programming) Klee-UC while I was trying to analyze drivers

with it. Thankfully, Klee-UC was indeed able to re-find most of those

bugs, so at least we had some research contribution and results to

write up for our paper submission.

There was one huge problem, though. By the time we got those

favorable results, there were only three days left until the paper sub-

Year One: Downfall 15

mission deadline, and nobody had even begun writing the paper yet.

In that tiny amount of time, it’s physically impossible to write, edit,

and polish a paper submission that stands any chance of being ac-

cepted to a top-tier computer science conference. But we still tried.

In the final 72 hours before the deadline, Dawson and five of us stu-

dents (one had dropped out of the project by now) camped out at the

office for two consecutive all-nighters to finish up the experiments and

to write the paper. All of us students knew in the back of our minds

that there was absolutely no way that this paper would get accepted,

but we followed Dawson’s lead and obediently marched forward. My glasses broke during
that grind. No joke.
My glasses broke during
that grind. No joke.

We ended up submitting an embarrassing jumble of text filled with

typos, nonsensical sentence fragments, graphics without any explana-

tions, and no concluding paragraphs. It was a horrid mess. At that

moment, I had no idea how I would ever complete a Ph.D. if it meant

working in this terrible and disorganized manner. As expected, three

months later our paper reviews came back overwhelmingly negative,

filled with scathing remarks such as, “The [program committee] feels

that this paper is blatantly too sloppy to merit acceptance; please do

not submit papers that are nowhere near ready for review.”

∼

Right after this ordeal, I applied for and accepted a summer intern- This was easy since I
had already passed an
on-campus pre-screen
interview earlier that
year. Unsurprisingly,
Google recruits heavily
from Stanford, making
it ultra-convenient for
students to interview.

This was easy since I
had already passed an
on-campus pre-screen
interview earlier that
year. Unsurprisingly,
Google recruits heavily
from Stanford, making
it ultra-convenient for
students to interview.

ship at Google, since I desperately longed for a change of environment.

The internship wasn’t at all relevant to my research interests, but I

didn’t care. I just wanted to get away from Stanford for a few months.

It was now April 2007, and there were still ten weeks left until my

internship started in June. I had no idea what I could work on, but I

wanted to get as far away as possible from my previous four months

of dealing with Klee and Linux drivers. I didn’t care if we ended up

never revising and resubmitting our failed paper (we didn’t); I just

wanted to escape from those memories. But since I had accumulated

nearly 1,000 hours of experience using Klee and it was the only project

16 The Ph.D. Grind

Dawson cared about, I figured that it was a wise starting point for

developing new project ideas. Thus, I talked to Dawson about ideas

for using Klee in unconventional ways beyond simply finding bugs.

However, I quickly realized that I didn’t need to be bound by Klee

at all since I was funded by the NDSEG fellowship, not by Dawson’s

grants. In contrast, all of Dawson’s other students had no choice but

to continue working on Klee since they were funded by his Klee-related

grants. So I kept Dawson as my advisor, but I left the Klee project

and set out to create my own research project from scratch.

Why didn’t I “go solo” sooner? Because even though my fellow-

ship theoretically gave me the financial freedom to pursue whatever

research direction I wanted, I knew that I still needed the support of

some advisor in order to eventually graduate. Dawson was clearly in-

terested in having all of his new students work on Klee, so I spent four

months as a “good soldier” grinding on Klee rather than arrogantly

demanding to do my own project from the beginning. Besides, if I had

chosen another advisor, I would still need to prove myself by initially

working on their projects. There was no way to avoid paying my dues.

I spent the next ten weeks daydreaming of my own research ideas

in a complete vacuum without talking to anyone. Since I had such a

negative initial experience working in a research group for the past few

months, I now wanted to be left alone to think for myself. Dawson wasIn other words, I wasn’t
on the critical path of his
main research agenda,
so he was fine leaving
me alone to daydream.
But on the flip side,
he wasn’t motivated to
check up on me to see if
I was making progress.

In other words, I wasn’t
on the critical path of his
main research agenda,
so he was fine leaving
me alone to daydream.
But on the flip side,
he wasn’t motivated to
check up on me to see if
I was making progress.

fine with my absence, since he wasn’t funding me through his grants.

I lived in complete isolation, mentally burned-out yet still trying

to make some gradual progress. Every single day, I tried reading sev-

eral computer science research papers and taking notes to get inspired

to think of my own creative ideas. But without proper guidance or

context, I ended up wasting a lot of time and not extracting any mean-

ingful insights from my readings. I also rode my bicycle aimlessly in

the neighborhoods around campus in futile attempts to think of new

research ideas. Finally, I procrastinated more than I had ever done in

my life thus far: I watched lots of TV shows, took many naps, and

Year One: Downfall 17

wasted countless hours messing around online. Unlike my friends with

nine-to-five jobs, there was no boss to look over my shoulder day to

day, so I let my mind roam free without any structure in my life.

Although my research brainstorming was largely unfocused, my

thoughts slowly gravitated towards ideas related to the following ques-

tion: How can we empirically measure the quality of software? This

was one of my broad research interests prior to starting my Ph.D.,

inspired by my encounters with low-quality software during engineer-

ing internships. However, the problem with dreaming up ideas in a

vacuum back then was that I lacked the experience necessary to turn

those ideas into real research projects. Having full intellectual freedom

was actually a curse, since I was not yet prepared to handle it.

Although I was interested in developing new ways to measure soft-

ware quality, I acknowledged that it was only a fuzzy dream with no

grounding in formal research methodologies that the academic com-

munity would deem acceptable. If I tried to pursue this project on

my own, then I would be yet another quack outsider spouting non-

sense. There was no way I could possibly get those ideas published

in a top-tier or even second-tier conference, and if I couldn’t get my

work published, then I wouldn’t be able to graduate. I no longer had Most Ph.D. students I
know originally who set
out to become professors
lose this desire sometime
during grad school. It
happens to pretty much
everyone except for the
true all-stars and the
mildly self-delusional. I
just happened to have
lost this desire very early.

Most Ph.D. students I
know originally who set
out to become professors
lose this desire sometime
during grad school. It
happens to pretty much
everyone except for the
true all-stars and the
mildly self-delusional. I
just happened to have
lost this desire very early.

lofty dreams of becoming a tenured professor: I just wanted to figure

out some way to eventually graduate.

I hardly talked to anybody during those ten solitary weeks—not

even friends or family. There was no point in complaining, since no-

body could understand what I was going through at the time. My

friends who were not in Ph.D. programs thought that I was merely

“in school” and taking classes like a regular student. And the few

friends I had made in my department were equally depressed with

their own first-year Ph.D. struggles—most notably, the shock of be-

ing thrown head-first into challenging, open-ended research problems

without the power to affect the high-level direction of their assigned

projects. Here we were, talented young computer scientists voluntarily

18 The Ph.D. Grind

working on tasks that were both excruciatingly difficult and seemingly

pointless, all while earning one-fourth as much salary as our friends

in the corporate working world. It was so sad that it was perversely

funny. However, I didn’t feel that group whining would be productive,

so I kept silent. I avoided coming to the Computer Science Depart-

ment building to work, since I dreaded running into colleagues. I was

afraid that they would inevitably ask me what I was working on, and

I didn’t have a respectable answer to give. Instead, I preferred hiding

out in libraries and coffee shops.

In retrospect, going solo so early during grad school was a terrible

decision. Contrary to romanticized notions of a lone scholar sitting

outside sipping a latte and doodling on blank sheets of notebook paper,

real research is never done in a vacuum. There needs to be solid

intellectual, historical, and sometimes even physical foundations (e.g.,

laboratory equipment) for developing one’s innovations. The wiser

course of action during those weeks would have been to talk to Dawson

more frequently, and to actively seek out collaborations with other

professors or senior students. But back then, I was so burned-out and

frustrated with the traditional pecking order of group-based research—

putting new Ph.D. students through the meat grinder on the most

unglamorous work—that I recoiled and went off on my own.

∼

Towards the end of my ten weeks of isolation—right before I startedThose ten weeks felt
like forever due to my
extreme isolation and
stagnation. Nowadays
when things are moving
along well at work, ten
weeks fly by so quickly.

Those ten weeks felt
like forever due to my
extreme isolation and
stagnation. Nowadays
when things are moving
along well at work, ten
weeks fly by so quickly.

my summer internship at Google—I emailed Dawson a blurb from a

technical blog post I had recently read and reflected upon. That blog

post made me think about measuring software quality by analyzing

patterns in how programmers edit code throughout the lifetimes of

software projects. To my pleasant surprise, Dawson shot back a quick

reply saying that he had a side interest in these sorts of measurement

techniques, especially in how they might assist automatic bug-finding

tools such as Klee.

Year One: Downfall 19

I grew hopeful when I learned about Dawson’s interest in an area

that I also found interesting, since he might be able to help make

my ideas more substantive. I jotted down some notes on my newly-

proposed empirical software measurement project with the intention

of returning to it after my summer internship. Thus, I ended my first

year of Ph.D. on a somewhat optimistic note after four months of

traumatic Klee grinding followed by ten weeks of aimless meandering.

20 The Ph.D. Grind

Year Two: Inception

My summer internship at Google was a welcome break from research.

The work was low-stress, and I had fun socializing with fellow interns.

By the end of the summer, I had recuperated enough from my previous

year’s burnout to make a fresh start at being a Ph.D. student again.

At the end of the summer, I wrote an email to Dawson reaffirm-

ing my desire to pursue my personal interests while simultaneously

acknowledging the need to do legitimate publishable research: “I’ve Thinking back, I’m sur-
prised by how well I
understood the Ph.D.
game so early on. I
couldn’t have worded
this sentiment any better
now, except that I’d also
add fundable as an extra
criteria for success.

Thinking back, I’m sur-
prised by how well I
understood the Ph.D.
game so early on. I
couldn’t have worded
this sentiment any better
now, except that I’d also
add fundable as an extra
criteria for success.

realized from this summer and my previous work experiences that it’s

going to be really hard for me to push ahead with a Ph.D. project

unless I feel a strong sense of ownership and enthusiasm about it, so

I really want to work to find the intersection of what I feel passionate

about and what is actually deemed ‘research-worthy’ by professors and

the greater academic community.”

I planned to continue working with Dawson on the empirical soft-

ware measurement project that we had discussed at the end of my first

year. However, I had a sense that this project might be risky because

it was not within his main areas of expertise or interest; Klee was still

his top priority. Therefore, I wanted to hedge my bets by looking for This was a very wise de-
cision, since if a project
isn’t a professor’s main
priority at the time, it
will be hard for them to
muster up the enthusi-
asm to advise it well.

This was a very wise de-
cision, since if a project
isn’t a professor’s main
priority at the time, it
will be hard for them to
muster up the enthusi-
asm to advise it well.

another project to concurrently work on and hoping that at least one

of them would succeed. I’ll describe my main project with Dawson

later in this chapter, but first I’ll talk about my other project.

∼

21

22 The Ph.D. Grind

Right before starting my second year of Ph.D. in September 2007,

I took a one-week vacation to Boston to visit college friends. Since I

was in the area, I emailed a few MIT professors whom I knew from my

undergraduate days to ask for their guidance. When they met with

me, they all told me roughly the same thing: Be proactive in talking

with professors to find research topics that are mutually interesting,

and no matter what, don’t just hole up in isolation. This simple piece

of advice, repeatedly applied over the next five years, would ultimately

lead me to complete my Ph.D. on a happy note.

I immediately took this advice to heart while I was still in Boston.

I cold-emailed (sent an unsolicited email to) an MIT computer scienceThis was one of the most
important cold-emails
of my life so far, since
it would foreshadow
the start of my faculty
career seven years later.
After my brief stint at
Google after graduation,
Rob ended up being
my postdoc advisor in
2013–2014, which helped
launch my faculty career.

This was one of the most
important cold-emails
of my life so far, since
it would foreshadow
the start of my faculty
career seven years later.
After my brief stint at
Google after graduation,
Rob ended up being
my postdoc advisor in
2013–2014, which helped
launch my faculty career.

professor named Rob to politely request a meeting with him. In this

initial email, I briefly introduced myself as a recent MIT alum and

current Stanford Ph.D. student who wanted to build tools to improve

the productivity of computer programmers. Since I knew that Rob was

also interested in this research area, I hoped that he would respond

favorably rather than marking my email as spam. Rob graciously met

with me for an hour in his office, and I pitched a few project proposals

to get his feedback. He seemed to like them, so I grew encouraged that

my ideas were at least somewhat acceptable to a professor who worked

in this research area. Unfortunately, I wouldn’t be able to work with

Rob since I was no longer an MIT student. At the end of our meeting,Six years later, I finally
got to work with him as
a postdoc.

Six years later, I finally
got to work with him as
a postdoc. Rob suggested for me to talk to a Stanford computer science professor

named Scott to see if I could sell him on my ideas.

When I returned to Stanford, I cold-emailed Scott to set up an

appointment to chat. I came into the meeting prepared with notes

about three specific ideas and pitched them in the following format:

1. What’s the problem?

2. What’s my proposed solution?

3. What compelling experiments can I run to demonstrate the effec-

tiveness of my solution?

Year Two: Inception 23

My friend Greg, one of Rob’s Ph.D. students, taught me the im- Greg was a source of
iconoclastic inspiration
throughout my Ph.D.,
convincing me that I
was indeed capable of
doing HCI research and
also helping to hone my
faculty interview job talk.

Greg was a source of
iconoclastic inspiration
throughout my Ph.D.,
convincing me that I
was indeed capable of
doing HCI research and
also helping to hone my
faculty interview job talk.

portance of the third point—thinking in terms of experiments—when

proposing research project ideas. Professors are motivated by having

their names appear on published papers, and computer science con-

ference papers usually need strong experiments to get accepted for

publication. Thus, it’s crucial to think about experiment design at

project inception time.

Although none of my specific ideas won Scott over, he still wanted

to work with me to develop a project related to my general interests.

At the time, he was an assistant (pre-tenure) professor who had been After earning tenure,
Scott moved to UCSD as
an associate professor.

After earning tenure,
Scott moved to UCSD as
an associate professor.at Stanford for only three years, so he was eager to publish more papers

in his quest to earn tenure. Since I had a fellowship, Scott didn’t need Free + Enthused = Good!Free + Enthused = Good!

to fund me from his grants, so there was no real downside for him.

∼

Scott specialized in a pragmatic subfield of computer science called If you had told me back
then that I would some-
day get hired into an
HCI faculty position, I
wouldn’t even know how
to respond. That wasn’t
remotely on my mind at
the time; I just wanted to
get away from Klee.

If you had told me back
then that I would some-
day get hired into an
HCI faculty position, I
wouldn’t even know how
to respond. That wasn’t
remotely on my mind at
the time; I just wanted to
get away from Klee.

HCI (Human-Computer Interaction). In contrast to many other sub-

fields, the HCI methodology for doing research centers on the needs of

real people. Here is how HCI projects are typically done:

1. Observe people to find out what their real problems are.

2. Design innovative tools to help alleviate those problems.

3. Experimentally evaluate the tools to see if they actually help people.

Since I wanted to create tools to help improve the productivity of

programmers, Scott first suggested for me to observe some program-

mers at work in their natural habitat to discover what real problems

they were facing. In particular, Scott was intrigued by how modern-

day programmers write code using an assortment of programming lan-

guages and rely heavily on Web search and copying-and-pasting of code

snippets. The previous few decades of research in programmer pro-

ductivity tools have assumed that programmers work exclusively with

24 The Ph.D. Grind

a single language in a homogeneous environment, which is a grossly

outdated assumption. By observing what problems modern-day pro-

grammers face, I might be able to design new tools to suit their needs.

Now that Scott had provided a high-level goal, I set out to find

some professional programmers whom I could observe at work. First,

I tried to drum up some leads at Google, since I had just interned there

and my former manager agreed to forward my email solicitation to his

colleagues. I quickly received a few polite rejections, since nobody

wanted to deal with possible intellectual property issues arising from

a non-employee looking at their code. I then emailed a dozen friends atThere was absolutely no
upside for them since
they didn’t care about
research publications. I
never found an incentive
that resonated with them.

There was absolutely no
upside for them since
they didn’t care about
research publications. I
never found an incentive
that resonated with them.

various startup companies near Stanford, figuring that they would not

be subject to the same constraints as programmers at a big company.

Unfortunately, they were even less accommodating since they had a

greater need for secrecy due to competitive reasons. Also, they were

far busier than their big-company counterparts and thus unwilling to

indulge the intellectual fancy of some random graduate student.

My last-ditch attempt was to try to observe programmers at Mozilla,

the nonprofit software development foundation that makes the popular

Firefox web browser. Since Mozilla’s software projects were all open-

source, I figured that they would not be afraid of an outsider coming

in to watch their programmers work. Rather than cold-emailing (I

didn’t even know who to email!), I decided to drive to the Mozilla

headquarters and walk in the front door. I accosted the first person

I saw and introduced myself. He generously gave me the names and

email addresses of two Mozilla Foundation leaders who might be in-

terested in such a research collaboration. I cold-emailed both of them

later that day and was amazed that one responded favorably. Unfor-

tunately, that was the last I heard from him; he never responded toIf this had worked out,
it would’ve made for an
awesome story.

If this had worked out,
it would’ve made for an
awesome story. my requests to follow up.

In retrospect, I’m not surprised that my workplace shadowing at-

tempts failed, since I had absolutely nothing to offer these professional

programmers; I would just be disrupting their workday. Fortunately, a

Year Two: Inception 25

few years later I managed to observe a different set of (nonprofessional)

programmers—fellow graduate students doing programming for scien-

tific research—who welcomed my light intrusions and were more than

happy to talk to me about their working environments. Those inter-

views would end up directly inspiring my dissertation work.

∼

Since I had no luck in shadowing professional programmers, I de-

cided to look within Stanford for opportunities. When I saw a flyer

announcing an annual computer programming competition being held

soon in my department, I immediately cold-emailed the organizer. I

pitched him on the idea of having me observe students during the

competition, and he happily agreed.

Although a student programming competition was not indicative

of real-world programming environments, at least it was better than

nothing. Joel, one of Scott’s students who entered the Ph.D. program Joel is now a Senior Re-
search Scientist at Adobe
Systems, and he’s given
me tremendously useful
career advice throughout
the years. It all started
with that one uneventful
Saturday morning.

Joel is now a Senior Re-
search Scientist at Adobe
Systems, and he’s given
me tremendously useful
career advice throughout
the years. It all started
with that one uneventful
Saturday morning.

one year before me, wanted to come observe as well. Joel and I spent an

entire Saturday morning watching a few students participating in the

four-hour competition. It was a pretty boring sight, and we didn’t end

up learning much from the notes we took. However, this experience

gave us the idea to plan a more controlled laboratory study.

At this point, Scott decided to have Joel and me team up to create

a lab study together rather than working on separate projects. Since

Joel and I shared similar research interests, Scott could reduce his Plus, Joel was already
Scott’s Ph.D. student.
Plus, Joel was already
Scott’s Ph.D. student.

management overhead by having us join forces. I was happy to let

Joel take the lead on the lab study design, since I was concurrently

working on another project with Dawson.

Joel, Scott, and I designed a lab study where we asked Stanford

students to spend 2.5 hours programming a simple Web-based chat

room application from scratch. They were allowed to use any resources

they wanted, most notably searching the Web for existing code and

tutorials. We recruited 20 students as participants, most of them

26 The Ph.D. Grind

coming from the Introduction to HCI course that Scott was teaching

at the time.

Over the next few weeks, Joel and I sat in our department’s base-This was my first taste of
conducting HCI research,
which is what I do now
in my current job.

This was my first taste of
conducting HCI research,
which is what I do now
in my current job.

ment computer lab for 50 hours (2.5 hours x 20 students) observing

study participants and recording a video feed of the lab’s computer

monitor. Watching the students at work was engaging at first but

quickly grew tedious as we observed the same actions and mistakes

over and over again. We then spent almost as much time watch-

ing replays of the recorded videos and marking occurrences of critical

events. Finally, we analyzed our notes and the marked events to gar-

ner insights about what kinds of problems these students faced when

working on a simple yet realistic real-world programming task.

We wrote up our lab study findings and submitted our paper to a

top-tier HCI conference. Three months later, we found out that our

paper was accepted with great reviews and even nominated for a Best

Paper Award. Joel was listed as the first author on this paper, and I

was the second author. Almost all computer science papers are coau-

thored by multiple collaborators, and the order in which authors are

listed actually matters. The author whose name appears first is the

project leader (e.g., Joel) who does more work than all subsequently

listed authors and thus deserves most of the credit. All other authors

are project assistants—usually younger students (e.g., me) or distant

colleagues—who contributed enough to warrant their names being on

the paper. Ph.D. students often list their advisor (e.g., Scott) as the

last author, since the advisor helps with idea formulation, project plan-

ning, and paper writing.

Since I wasn’t the first author on this paper, it didn’t contribute

towards my dissertation; however, this experience taught me a great

deal both about how to do research and about how to write research

papers. Most importantly, I felt satisfied to see this project concludeThis was a redeemer for
last year’s failed Klee
paper submission.

This was a redeemer for
last year’s failed Klee
paper submission. successfully with a prestigious top-tier conference publication, in stark

contrast to the embarrassing Klee paper rejection from my first year.

http://www.pgbovine.net/projects/pubs/brandt_chi09_webuse.pdf
http://www.pgbovine.net/projects/pubs/brandt_chi09_webuse.pdf

Year Two: Inception 27

Joel continued down this research path by turning our paper into

the first contribution of his dissertation. Over the next few years, he

built several tools to help programmers overcome some of the prob-

lems we identified in that initial study and published papers describ-

ing those tools. In the meantime, Scott didn’t actively recruit me to

become his student, so I never thought seriously about switching ad-

visors. It seemed like my interests were too similar to Joel’s, and Joel

was already carving out a solid niche for himself in his subfield. Thus,

I focused my efforts on my main project with Dawson, since he was

still my advisor. Progress was not as smooth on that front, though.

∼

Recall that at the end of my first year, I started exploring research

ideas in a subfield called empirical software measurement—specifically,

trying to measure software quality by analyzing the development his-

tory of software projects. It turned out that Dawson was also inter-

ested in this topic, so we continued working together on it throughout

my second year. His main interest was in building new automated

bug-finding tools (e.g., Klee), but he had a side interest in software

quality in general. He was motivated by research questions such as:

• If a large software project has, say, 10 million lines of code, which

portions of that code are crucial to the project, and which are

not as important?

• What factors affect whether a section of code is more likely to

contain bugs? For example, does code that has been recently

modified by novices contain more bugs? What about code that

has been modified by many people over a short span of time?

• If an automated bug-finding tool finds, say, 1,000 possible bugs,

which ones are likely to be important? Programmers have nei-

ther the time nor energy to triage all 1,000 bug reports, so they

must prioritize accordingly.

28 The Ph.D. Grind

I investigated these kinds of questions by analyzing data sets re-

lated to the Linux kernel software project. I chose to study Linux since

it was the largest and most influential open-source software project at

the time, with tens of thousands of volunteer programmers contribut-

ing tens of millions of lines of code over the span of two decades. The

full revision control history of Linux was available online, so that be-

came my primary source of data. A project’s revision control history

contains a record of all modifications made to all code files throughout

that project’s lifetime, including when each modification was made,

and more importantly, by whom. To correlate project activity with

bugs, I obtained a data set from Dawson’s software bug-finding com-

pany containing 2,000 bugs that one of its bug-finding tools had found

in Linux. Of course, those were not the only bugs in Linux, but it

was the only accessible data source with the information I needed to

investigate our research questions.

My daily workflow consisted of writing computer programs to ex-This was my first foray
into data science, which
turned into a hot buzz-
word around 2012.

This was my first foray
into data science, which
turned into a hot buzz-
word around 2012.

tract, clean up, reformat, and analyze the data from the Linux revision

control history and those 2,000 bug reports. To help obtain insights, I

taught myself the basics of quantitative data analysis, statistics, and

data visualization techniques. As I worked, I kept a meticulous log of

my experimental progress in a research lab notebook, noting which tri-

als did and did not work. Every week or so, I would meet with Dawson

to present my findings. Our meetings usually consisted of me showing

him printouts of graphs or data tables that my analyses had gener-

ated, followed by him making high-level suggestions such as, “Wow,

this part of the graph looks weird, why is that? Split the data up in

this way and dig deeper.” Years later, I learned that this working style

was fairly common amongst computational researchers in a variety of

academic fields; for my dissertation, I created tools to eliminate com-

mon inefficiencies in this pervasive type of workflow. However, back

at that time, I had no such long-term visions; I just wanted to make

interesting discoveries and get them published.

Year Two: Inception 29

∼

Dawson and I had a lot of trouble getting our results published.

Throughout the year, we made two paper submissions that were both

rejected. It would take another full year before this work finally got

published as a shorter-length, second-tier conference paper, which held

almost no prestige and didn’t “count” as a contribution to my disser-

tation. But by then, I didn’t care because I had already moved on to

other projects.

The underlying cause of our publication troubles was that we were

not “insiders” in the empirical software measurement subfield (some-

times also called empirical software engineering) to which our project

belonged. At the time Dawson and I started working in this sub-

field, teams of researchers from dozens of universities and corporate

research labs were already doing similar work. Dawson and I were

severely outgunned by the competition, which consisted of professors

and research scientists specializing in empirical software measurement

who were advising armies of Ph.D. students to do the heavy number

crunching. These people were hungry to publish a ton of papers, since In contrast, Dawson was
already-tenured and had
only a mild side interest
in this topic. The les-
son here is that it’s very
hard to publish on a
topic if your advisor isn’t
also obsessively thinking
about it, since you’re di-
rectly competing against
other students whose
advisors are obsessively
thinking about it.

In contrast, Dawson was
already-tenured and had
only a mild side interest
in this topic. The les-
son here is that it’s very
hard to publish on a
topic if your advisor isn’t
also obsessively thinking
about it, since you’re di-
rectly competing against
other students whose
advisors are obsessively
thinking about it.

lots of them were young professors who wanted to earn tenure. They

were also experts in the statistical methodologies, framing of related

work, and “marketing pitches” required to get these sorts of papers

accepted. Most importantly, they frequently served on program com-

mittees and as external reviewers for the relevant conferences, so they

knew exactly what it took to write publishable papers in this subfield.

Recall that each paper submission gets peer-reviewed by three to

five volunteer experts—usually professors or research scientists—who

critique its merit. If reviewers deem a paper worthy of publication,

then it gets published; otherwise, authors must revise and resubmit at

a later date. The purpose of peer review is to ensure that all published

papers are up to a certain level of acceptable quality, as determined

by the scholarly community. This vetting process is absolutely nec-

essary, since there needs to be some arbiters of “goodness” to filter

http://www.pgbovine.net/projects/pubs/guo_usenix09_camera_ready.pdf

30 The Ph.D. Grind

out crackpot claims. However, the peer-review process is inherently

imperfect since, despite their best efforts at being impartial, reviewers

are human beings with their own subjective tastes and biases.

Since conferences usually accept less than 20 percent of paper sub-

missions, if reviewers get a bad first impression when reading a paper,

then they are likely to reject it. Dawson and I were not specialists

in the empirical software measurement subfield, so we weren’t able to

“pitch” our paper submissions in a way that appealed to reviewers’

expectations. Thus, we repeatedly got demoralized by negative re-

views such as, “In the end, I find I just don’t have much confidence

in the results the authors present. There are two sources of doubt: I

don’t trust their interpretation of the measures, and they don’t use

very effective statistical techniques.” In the cutthroat world of aca-

demic publishing, simply being passionate about a topic is nowhere

near sufficient for success; one must be well-versed in the preferences

of senior colleagues in a particular subfield who are serving as paper

reviewers. In short, our data sets were not as good, our techniques

were not as refined, and our results and presentation style were less

impressive than what the veterans in this subfield expected.

In contrast, my paper submission with Scott and Joel was far more

successful because Scott was an insider who had previously published

and reviewed many papers in the HCI conference where we submitted

our paper. Of course, being an insider didn’t mean that our paper was

scrutinized any less rigorously, since that would be unfair. However,I cannot re-emphasize
this point enough times:
Properly calibrating your
pitch to the academic
sub-community you’re
targeting is crucial for
getting a paper accepted.

I cannot re-emphasize
this point enough times:
Properly calibrating your
pitch to the academic
sub-community you’re
targeting is crucial for
getting a paper accepted.

Scott could leverage his experience to present our project’s motivations

and findings in a way that was the most palatable to those sorts of

reviewers, thereby raising our paper’s chances of acceptance.

∼

Year Two: Inception 31

By the end of my second year of Ph.D. (June 2008), I was growing

frustrated by my lack of compelling results and overwhelmed by the

flurry of papers being published in the empirical software measure-

ment subfield. I still hadn’t been able to publish my own findings and

realized that I couldn’t effectively compete with the veterans: Since

neither Dawson nor I knew what those paper reviewers wanted to see,

I sensed that trying to publish in this subfield would be a continual up-

hill struggle. And since publishing was a prerequisite for graduation,

I had to find another project as soon as possible, or else I wouldn’t be

able to earn a Ph.D. As I prepared to begin my third year at Stanford,

I was desperate to cling onto anything that had a reasonable chance

of producing publishable results. And that’s when I returned back to

the project that haunted me from my first year—Klee.

32 The Ph.D. Grind

Year Three: Relapse

As I began my third year of Ph.D. in the middle of 2008, I rejoined the

Klee project, again as the most junior student. At that time, the only

two remaining people on the Klee team were its original co-creators:

Dawson and Cristi (his most senior Ph.D. student). All other Klee

team members had already left the project.

I had mixed feelings about returning. On one hand, my traumatic

first-year experiences with Klee made me dread both the project and

also the team dynamics. On the other hand, Cristi and Dawson were

both very passionate about Klee and wanted to publish additional

follow-up papers. Since they were veteran insiders in the software

bug-finding subfield, I felt like I had a strong chance of publishing pa-

pers together with them. The alternative would have been to continue

the empirical software measurement project from my second year. Al-

though I was much more interested in that project, I knew that it

would be a continual struggle to publish in a subfield where Dawson

and I were both outsiders. And since my goal was to publish and earn

a Ph.D., I tucked away my ego and took the plunge into Klee again.

I wrote Dawson an email announcing, “my main plan is to team up

with you and cristi on klee to do something solid and hopefully make

some [paper] submission in a few months. i think that leveraging klee

and aligning with both of your interests and incentives will be the best

way for me to both make a contribution and also to feel satisfied about

making concrete forward progress every day.”

33

34 The Ph.D. Grind

∼

Cristi and Dawson wanted me to experiment with a new way of

running Klee called cross-checking, which allowed it to find inconsis-

tencies between two different versions of similar software. For the nextI had an offer to return
to Google for a second
summer internship, but I
chose to stay on campus
to grind on Klee instead.

I had an offer to return
to Google for a second
summer internship, but I
chose to stay on campus
to grind on Klee instead.

four months (July to October 2008), my day-to-day grind was similar

to my first-year Klee assignment with Linux device drivers, except that

I now paced myself a lot better to remain healthy and avoid burnout.

Just like during my first year, I was doing a lot of grungy manual labor

to use Klee to discover new bugs in software rather than improving

Klee in any substantive way. My daily workflow consisted of setting

up dozens of Klee configuration options, launching Klee to run for ap-

proximately ten hours to cross-check a set of test software programs,

coming back the next morning to collect, analyze, visualize, and inter-

pret the results, making the appropriate adjustments to Klee’s options,

and then firing off another ten-hour round of experiments.

Like other sophisticated software tools, Klee had dozens of ad-

justable configuration options. And since it was a research prototype

hacked together by students, the behaviors of most of those options

were not clearly documented. As a result, I wasted a lot of time due

to misunderstanding the subtle interactions between options as I was

adjusting them. I filled my research lab notebook with curses such as:This experience would
later inspire one of
my Ph.D. dissertation
projects, an improved
electronic lab notebook.

This experience would
later inspire one of
my Ph.D. dissertation
projects, an improved
electronic lab notebook.

“OH SHIT, I think my mistake was in not realizing that there are cer-

tain options you’re supposed to pass into Klee (e.g., -emit-all-errors)

and others that you’re supposed to pass into the target program to be

used to set up the model environment (e.g., –sym-args), and if these

are confused, then strange things happen because Klee is executing

the target program with different argc and argv than you expect.”

Throughout those months, Cristi and Dawson sometimes talked

about submitting a Klee cross-checking paper, so I was motivated by

that seemingly-concrete goal. As I was working, I wrote up an outline

for a paper submission and incrementally filled it in with my notes and

results. However, to my surprise, neither Cristi nor Dawson showed

Year Three: Relapse 35

much urgency in getting this paper polished and submitted. I was not

yet capable of submitting a respectable paper on this topic without

their expertise and assistance, since I was merely an assistant doing

manual labor: The true research insights and high-level persuasive

pitch still needed to come from them. In the end, we never submitted

a paper, and my four months of work was again in vain, just like during

my first-year Klee grind.

This project fizzled due to a combination of my own lack of tech-

nical expertise and insufficient mentorship from senior colleagues. Al-

though Cristi was patient in advising me on cross-checking ideas and

debugging Klee idiosyncrasies, his heart wasn’t fully into our project.

Since he was in the process of finishing up his Ph.D., his main priority

at the time was applying for jobs as an assistant professor. The faculty

job application process takes several grueling months of serious effort,

and many applicants still end up with no offers. Each university de-

partment offers at most one or two tenure-track professor job positions

per year, and over a hundred highly-qualified senior Ph.D. students,

postdocs (temporary postdoctoral researchers), and research scientists

fight for those coveted spots. The academic job hunt is a stressful pro-

cess that consumes almost all of one’s waking time and mental energy.

Thus, Cristi had no incentive to spend hundreds of hours working on

yet another paper submission, since even if it got accepted, the noti-

fication would come too late to matter for his job applications.

In hindsight, I can see why this project was likely to fail because

of misaligned incentives, but back then, I lacked the wisdom to foresee

such a failure. Recall that I decided to become a Klee assistant for

Cristi and Dawson since I wanted to join an older Ph.D. student and

professor who were experienced in publishing papers in their given

subfield. I did so because this plan worked marvelously during the

previous year when I helped Joel (an older Ph.D. student) and Scott

(a professor) on their HCI project, which led to a top-tier award-

nominated paper.

36 The Ph.D. Grind

So what was different here? In short, neither Cristi nor Dawson

were truly hungry to publish. They had already published several Klee

papers together, and a cross-checking paper coauthored with me would

have been a “nice-to-have” but not mandatory follow-up publication.

Cristi was in his final year of Ph.D. and didn’t need to publish any more

papers to graduate, and Dawson already had tenure, so he wasn’t in a

rush to publish either. In contrast, Joel was a mid-stage Ph.D. student

who was itching to publish the first paper of his dissertation, and Scott

was an assistant professor who needed to publish prolifically to earn

tenure. These two opposing experiences taught me the importance of

deeply understanding the motivations and incentives of one’s potential

collaborators before working with them.

∼

Since the cross-checking project went nowhere and Cristi was busy

with his faculty job applications, I decided to take the lead on my

own Klee-related project rather than continue serving as an assistant.

After some discussions with Dawson, he suggested for me to try to

improve a core component of Klee—its search algorithm. Klee finds

bugs by searching through a “maze” of executable software code, so

improving its search algorithm might enable it to find more bugs.

For the first time, I was modifying Klee in a novel way—improving

its search algorithm—rather than simply doing manual labor to run

Klee to find bugs in software. One way to measure how well I was doing

was to compute the percent coverage that Klee achieves (i.e., how

much of the code maze was “covered” by Klee’s searching) on a set of

test software programs. Dawson’s goal was simple: to get significantly

better coverage than the current search algorithm reported in the latest

Klee paper. On a suite of 89 test programs, Klee already achieved an

average of 91 percent coverage on each program (100 percent is perfect

coverage). My job was to improve those coverage numbers as much as

possible. Every day, I would modify Klee’s search algorithm, run Klee

http://www.pgbovine.net/PhD-memoir/klee-osdi-2008.pdf
http://www.pgbovine.net/PhD-memoir/klee-osdi-2008.pdf

Year Three: Relapse 37

on the 89 test programs (which would take approximately ten hours),

come back the next morning to see the coverage numbers, and then

make another round of modifications to Klee’s code and rerun it on

the test programs.

It was now the middle of my third year, and many of my fellow The original title of this
chapter was “Year Three:
Limbo.”

The original title of this
chapter was “Year Three:
Limbo.”students and I fell into a state of “limbo” where it became difficult to

motivate ourselves to consistently come into the office every single day.

We also experienced isolation and loneliness from spending day and

night grinding on obscure, ultra-specialized problems that few people

around us understood or even cared about. Our advisors and senior

colleagues sometimes provided high-level guidance, but they rarely sat

down together with us to work out all of the grimy details.

Unlike our peers with regular nine-to-five jobs, there was no im-

mediate pressure for grad students to produce anything tangible—no

short-term deadlines to meet or middle managers to please. For most

students in my department, nobody would notice or care if they took

one day off, so by extension, why not take two days off, a whole week

off, or even a whole month off? Therefore, it’s unsurprising that many

Ph.D. students who drop out do so around their third year.

To fend off procrastination, I worked tirelessly to impose self-

discipline and structure on my workdays. I tried to “micromanage”

myself by setting small, bite-sized goals and attacking them every day,

hoping that positive results would eventually come. But it was hard

to keep myself motivated when I didn’t see noticeable daily progress.

Discipline alone wasn’t enough; I failed to achieve any favorable re-

sults after three months of tuning Klee’s search algorithms. Since Klee

already achieved 91 percent average coverage on our test programs, it

was excruciatingly difficult for me to improve those numbers by a few

percent up to an average of, say, 94 percent. Even worse, these kinds

of minor improvements simply don’t look impressive in a paper sub-

mission. The one-line story of our paper would be something like:

“We improved Klee’s search algorithm in some ways to get its average

38 The Ph.D. Grind

coverage up from 91 to 94 percent.” This is hardly an exciting or even

interesting result in the eyes of reviewers; it’s a typical example of bor-

ing incremental improvements to an existing project. Unsurprisingly,

Dawson wasn’t interested in attempting to submit such a lame paper.

If I had improved Klee’s search algorithm in a fascinating and ef-

fective way, then Dawson might have been more excited and worked

harder to try to submit a paper. But in January 2009, after three

months of futile grinding, I couldn’t see how my day-to-day incre-

mental efforts would ever result in a breakthrough that met Dawson’s

expectations. I hate being labeled as a quitter, but I felt like this Klee

search algorithm project was a dead-end, so I quit.

Looking back now, I take perverse solace in one tragic fact: After

I stopped working on Klee’s search algorithm, two of Dawson’s otherOne of those students
dropped out of the Ph.D.
program after over nine
years in the department
and zero publications,
and the other one grad-
uated after nine years
and only one Klee-related
publication. That pub-
lication addressed the
same search algorithm
problem that I originally
attempted. It took that
student five years to pub-
lish that paper, which let
him graduate.

One of those students
dropped out of the Ph.D.
program after over nine
years in the department
and zero publications,
and the other one grad-
uated after nine years
and only one Klee-related
publication. That pub-
lication addressed the
same search algorithm
problem that I originally
attempted. It took that
student five years to pub-
lish that paper, which let
him graduate.

Ph.D. students worked on this exact same problem, and neither has

published a single paper in the past three years. I don’t think I could

have done any better than those two students, so if I had stayed the

course on this particular project, then I might have also been stuck in

a three-year-long limbo.

∼

Despite repeated failures with Klee, I still wanted to keep working

on it because that was the only project Dawson cared about. I was

starting to hate Klee, but I had already sunk thousands of hours into

wrestling with its code, so I wanted something concrete to show for

my efforts. It was now the middle of my third year, and I was desper-

ate to publish a first-author paper that could form the basis for my

dissertation; I felt a bit behind since a few of my classmates had al-

ready published their first dissertation-worthy paper. I naively hoped

that Klee would be the “path of least resistance” to earning my Ph.D.,

since it was perfectly aligned with my advisor’s interests.

At this time, a first-year Ph.D. student named Peter joined Daw-

son’s lab group and was looking for a project. I talked to Dawson

Year Three: Relapse 39

about teaming up with Peter, figuring that the two of us working Back in Year One, Peter
was a visiting interna-
tional master’s student
in our lab working on
Klee, so this wasn’t his
first exposure. It was a
relapse for both of us.

Back in Year One, Peter
was a visiting interna-
tional master’s student
in our lab working on
Klee, so this wasn’t his
first exposure. It was a
relapse for both of us.

together might get better results than each working alone. Dawson

liked the idea, so he suggested for Peter and me to reimplement un-

derconstrained execution in Klee (abbreviated “Klee-UC”). Recall that

Dawson and another student implemented the first version of Klee-UC

during my first year. They created a rough first draft, submitted a

shoddy paper hastily written in three days (a debacle I remember all

too well), and then the project halted when that student dropped out to go work at Appleto go work at Apple

of the Ph.D. program shortly thereafter. So now, two years later,

it was up to Peter and me to reimplement Dawson’s initial Klee-UC

vision and hopefully get it working well enough to publish a paper.

I came into this new assignment with as much optimism as I could

muster, trying my best to forget my past with Klee. I convinced myself

that if I had any chance of publishing a Klee-related paper, it would

be with this current Klee-UC project. I wholeheartedly believed that

Dawson’s Klee-UC idea was innovative and interesting from a research

perspective, so if Peter and I could do a good enough job of imple-

menting it and finding important software bugs, then we would have

a strong paper submission. Moreover, I could reuse most of the exper-

imental infrastructure I had set up for the Linux device drivers work

from my first year, since we wanted to show how Klee-UC improves

upon regular Klee in terms of finding bugs in those drivers. Finally,

I fantasized about a successful Klee-UC paper being the ultimate re-

demption for all of those thousands of hours of manual labor I had

spent on Klee. After all, it was my struggles with using Klee on Linux

device drivers during my first year that directly inspired Dawson to

come up with the Klee-UC idea. Thus, it would be a fitting conclusion

if I were to first-author the paper that brought this idea to fruition

(professors in my field usually let their students be the first author,

even if the student’s project was based on their ideas). I even hoped

that this project would form the beginning of my dissertation and pave

the way for my eventual graduation.

40 The Ph.D. Grind

Over the next two months (February and March 2009), Peter and I

busted our butts to build Klee-UC. We had a lot of fun programming

together in the office every day; it was a welcome change from the soli-

tary day-to-day grind that most Ph.D. students experience. However,

after a while, Dawson seemed visibly disappointed with the relatively

slow pace of our progress. Peter and I thought we were doing fine,

but Dawson didn’t seem happy with our work, so he no longer felt like

aiming for an upcoming paper submission deadline.

At the time, I couldn’t understand why Dawson was so impatient

with us, but I can now sympathize with his feelings of frustration. He

had such a crystal-clear vision for Klee-UC in his mind, and he wanted

some talented and hardworking students to carry out his vision. If

Dawson were still a Ph.D. student, then he would have surely been

able to get Klee-UC done in a matter of weeks and then singlehandedly

write up and publish a top-tier paper. His publishing track record

when he was a student was beyond prolific, which is how he got a

top-tier faculty job at Stanford. However, since he was now busy with

professor duties such as teaching, committee work, paper reviewing,

and other errands, he could not devote the thousands of hours of

focused labor necessary to turn this idea into a publishable paper.

Like all professors in labor-intensive research fields, Dawson needed

students to execute on his visions.

I think that Dawson expected Peter and me to have gotten pub-

lishable results much faster, so to him, we either seemed incompetent

or not serious enough about our jobs. As a professor at a top-tier

university, it’s a sad reality that all of Dawson’s students are probably

less competent than he was as a Ph.D. student. The explanation is

simple: Only about 1 out of every 75 Ph.D. students from a top-tier

university has what it takes to become a professor at a school like

Stanford (or maybe 1 out of every 200 Ph.D. students from a regular

university). Unsurprisingly, neither Peter nor I was of that caliber.

If Dawson had worked with a younger clone of himself, then progress

Year Three: Relapse 41

would have been a lot faster!

Even though we put in a solid effort during those two months, Peter

and I felt like we had really let Dawson down on a project he cared

deeply about. Peter was so discouraged that he switched advisors and Peter meandered in a
computational biology
lab for two years before
dropping out to become
a systems software engi-
neer at Nvidia.

Peter meandered in a
computational biology
lab for two years before
dropping out to become
a systems software engi-
neer at Nvidia.

then later dropped out of the Ph.D. program altogether. With my

teammate gone, I grew more disillusioned and decided to quit Klee for

the final time.

∼

Two years after Peter and I left the Klee project, Dawson finally

found a new Ph.D. student who could properly implement his Klee-

UC vision to fruition. In 2011, Dawson and his new student published

a great paper incorporating both Klee-UC and cross-checking ideas.

In the end, it took three attempts by four Ph.D. students over the

course of five years before Dawson’s initial Klee-UC idea turned into a

published paper. Of those four students, only one “survived”—I quit

the Klee project, and two others quit the Ph.D. program altogether.

From an individual student’s perspective, the odds of success were low.

From a professor’s perspective, though, Klee-UC was a rousing

success! Since Dawson had tenure, his job was never in danger. In

fact, one of the purposes of tenure is to allow professors to take risks

by attempting bolder project ideas. However, the dark side of this

privilege is that professors will often assign students to grind on risky

projects with low success rates. And the students often can’t refuse,

since they are funded by their advisors’ grants. Thankfully, since I Fellowships are impor-
tant not for the money,
but rather for the free-
dom from grant-related
constraints.

Fellowships are impor-
tant not for the money,
but rather for the free-
dom from grant-related
constraints.

was funded by fellowships, it was much easier for me to quit Klee.

I don’t mean to single out Dawson or Klee in particular. This

mismatch of incentives between tenured professors and Ph.D. students

is a common problem in most labor-intensive science and engineering

research projects. What often happens is that a professor starts with

a pile of grant money and some high-level vision (e.g., Klee-UC or

cross-checking). The professor then hires several students and advises

http://www.pgbovine.net/PhD-memoir/ucklee-cav-2011.pdf

42 The Ph.D. Grind

them on implementing that vision, possibly (but not always) as part of

their dissertation work. Without thousands of hours of student labor,

there would be no tangible results and thus no publications.

The professor might need to go through several rounds of student

failures and dropouts before one set of students eventually succeeds.

Sometimes that might take two years, sometimes five years, or some-

times even ten years to achieve. Many projects last longer than indi-

vidual Ph.D. student “lifetimes.” But as long as the original vision is

realized and published, then the project is considered a success. The

professor is happy, the university department is happy, the grant fund-

ing agency is happy, and the final surviving set of students is happy.

But what about the student casualties along the way? A tenured

professor can survive several years’ worth of failures, but a Ph.D. stu-

dent’s fledgling career—and psychological health—will likely be ruined

by such a chain of disappointments.

∼

I attended Cristi’s oral defense in May 2009, the end of my third

year. The oral defense is the final rite of passage before a student earns

their Ph.D. degree: The student gives a one-hour presentation on their

dissertation research and must answer critical questions from a panel

of professors. Dawson, who is normally quiet and reserved, beamed

with visible pride as he introduced Cristi to the audience and raved

about what a pleasure it was to have worked together over the past

few years to create Klee. His praise was well-deserved: Cristi did a

wonderful job throughout his Ph.D., and the ideas embodied by Klee

helped create a brand-new subfield (called mixed concrete/symbolic

program execution) within the software bug-finding research world.

As I watched Cristi’s oral defense presentation, it finally sank in

that it would be almost impossible for me to get a substantive disserta-

tion out of Klee, so I felt more confident in my decision to quit. Cristi’s

Year Three: Relapse 43

phenomenal success made it more difficult for Dawson’s younger stu-

dents to publish and graduate. The groundbreaking initial Klee work

had already been done; all that remained were follow-up incremen-

tal enhancements such as improving the search algorithm, Klee-UC,

cross-checking, and applying Klee to new types of software such as Dawson’s only other two
Ph.D. graduates so far
after Cristi (not counting
myself) did their disserta-
tion work on incremental
Klee enhancements.

Dawson’s only other two
Ph.D. graduates so far
after Cristi (not counting
myself) did their disserta-
tion work on incremental
Klee enhancements.

Linux device drivers. Although these projects could certainly make

for publishable papers and maybe even a dissertation, Dawson wasn’t

nearly as hungry to publish as our newly-arrived competitors were.

Since Klee (and a few related projects from 2005 to 2008) cre-

ated a new subfield, dozens of assistant professors and young research

scientists quickly jumped on the bandwagon and ferociously cranked

out paper after paper describing incremental improvements to try to

win tenure or job promotions. It was like an academic gold rush,

prompted by the insights of Cristi, Dawson, and a few other early pi-

oneers. Since Dawson had tenure and was already famous for creating

Klee and other notable projects, he was above the fray and didn’t have

a desire to publish for the sake of padding his resume.

In effect, Ph.D. students working with those young researchers were

more easily able to publish and graduate, while Dawson’s students had

a much harder time by comparison. In the three years since I quit Klee,

dozens of research groups around the world have published hundreds

of papers based on Klee-like ideas. Amazingly, fifteen of those papers As of 2015, at least 33
papers on Klee enhance-
ments have been pub-
lished, and only two of
them have been from
Dawson’s group.

As of 2015, at least 33
papers on Klee enhance-
ments have been pub-
lished, and only two of
them have been from
Dawson’s group.

described enhancements to Klee itself, which our lab released as open-

source software to encourage further research. In the meantime, five

of Dawson’s Ph.D. students have seriously attempted to work on Klee;

so far, only one has published a single paper (on Klee-UC).

The sad irony here is that since Dawson’s direct competition was

now serving as conference program committee members and paper re-

viewers, it was much harder to get his papers published despite the

fact that he co-founded this subfield in the first place. Because Dawson

had not been actively publishing in recent years, he no longer knew all

of the rhetorical tricks, newfangled buzzwords, and marketing-related

http://www.pgbovine.net/PhD-memoir/ucklee-cav-2011.pdf

44 The Ph.D. Grind

contortions required to satisfy reviewers and get his papers accepted

into top-tier conferences. Also, the more furiously his competitors

published, the more strict the reviewers became about demanding for

him and his students to justify the originality of their ideas in relation

to the piles of related work, and the more frustrating the paper re-

jections became. After all, without Dawson’s groundbreaking insights

from the past decade, these picky reviewers would not even be working

in this subfield, much less criticizing and rejecting his papers!

I calculated that the only advantage of staying with Klee was that

Dawson deeply loved the project. Even if I couldn’t get any papers

published, he could maybe appeal to let me “pity graduate” with zeroIn retrospect, I don’t
think this would’ve been
allowed. I would’ve
needed at least one paper
to pity-graduate from a
place like Stanford.

In retrospect, I don’t
think this would’ve been
allowed. I would’ve
needed at least one paper
to pity-graduate from a
place like Stanford.

publications. But given my painful past with Klee, I couldn’t stomach

the possibility of grinding on it for an unknown number of additional

years just for the hope of a pathetic “pity graduation.”

By now, I had finished three years of my Ph.D. still without any

idea of how I was going to eventually put together a dissertation. I

had no concrete plan looking forward, but I knew that I wanted to get

away from Klee once and for all.

Intermission

Immediately after my third year of Ph.D., I spent the summer of 2009

in Seattle, Washington as an intern at the headquarters of Microsoft

Research. It was one of the most fun and productive summers of

my life: My internship project led to the publication of three top-

tier conference papers and, more importantly, helped establish the

motivation for my dissertation work.

At present, Microsoft Research is the premier corporate institution

for producing top-notch academic research. Research labs in most

companies are usually focused on R&D efforts to directly improve

their own future products. However, the primary mission of Microsoft

Research (abbreviated “MSR”) is to perform fundamental science and

engineering research with the intent of publishing top-tier academic

papers in computer science and a few related fields.

The best way to think of MSR is as a giant research university

without any students. The full-time researchers are like professors,

except that they can focus nearly all of their time on research since

they don’t have teaching or advising duties. But perhaps their favorite

job benefit is that they don’t need to apply for grant funding, which is

a tedious recurring activity that saps professors’ time. Since Microsoft

is an immensely profitable company, it allocates hundreds of millions

of dollars each year to funding academic (paper-producing) research.

Microsoft is betting that some of the intellectual property created by

its researchers might inspire future products, and it also wants the

45

46 The Ph.D. Grind

best minds in computer science on staff for consultation. That’s why

the company gives its researchers access to all of the resources required

to do their best work.

Getting a full-time researcher position at MSR is as difficult asSome researchers I know
there also got faculty job
offers at top universities.

Some researchers I know
there also got faculty job
offers at top universities. getting a job as a professor at a prestigious university. Although MSR

researchers don’t technically have tenure, job security is fairly good,

especially if they continually publish. Since lots of computer science

research is labor-intensive, researchers often hire Ph.D. students as

summer interns to help implement their ideas. It’s a great deal for

both parties: Researchers get students to assist with manual labor,

and students get the chance to publish top-tier papers with famous

researchers outside of their universities and possibly get letters of rec-

ommendation for future jobs. In the past decade, a significant fraction

of the papers at top-tier computer science conferences were written by

MSR researchers and their interns.

When I arrived at the MSR headquarters in the beginning of

the summer, the campus was abuzz with the energy of hundreds of

Ph.D. students meeting their managers and preparing to get to work.

Since we were there for only three months, our managers planned well-This limited time span
was great for motivating
students to focus. Back
in school, there often
wasn’t such a sense of
forced urgency, so stu-
dents could spend weeks
or months meandering.

This limited time span
was great for motivating
students to focus. Back
in school, there often
wasn’t such a sense of
forced urgency, so stu-
dents could spend weeks
or months meandering.

defined projects that would likely result in a paper submission. Most

of us were able to submit at least one paper from our summer work,

and a fraction of those papers ended up getting published. Of course,

research is inherently risky, so some interns were assigned projects

that never panned out into publications. Nonetheless, almost every-

one had a wonderful time—we were paid over four times our usual grad

school stipends, treated to fun Microsoft-sponsored social outings, and

attended lots of stimulating talks by top-notch researchers.

Perhaps the longest-lasting impact of an MSR internship is the

friendships we all made. During that summer, I had the privilege of

getting to know some of the brightest and most inspiring young com-

puter science researchers of my generation. For instance, one of myRaluca just finished her
Ph.D. at MIT and will
soon be an assistant
professor of computer
science at UC Berkeley.

Raluca just finished her
Ph.D. at MIT and will
soon be an assistant
professor of computer
science at UC Berkeley.

three officemates was about to start her Ph.D. at MIT, and she had

Intermission 47

already published more top-tier papers from her undergraduate re-

search than most Ph.D. students could ever hope to publish. Another

officemate was a UC Berkeley Ph.D. student who spent his nights and Leo finished his Ph.D.
at UC Berkeley and is
turning part of his dis-
sertation into an SF Bay
Area startup company
called Graphistry.

Leo finished his Ph.D.
at UC Berkeley and is
turning part of his dis-
sertation into an SF Bay
Area startup company
called Graphistry.

weekends working on a separate research project with collaborators

across the country in addition to doing his internship project during

workdays. These peers will likely grow into award-winning professors,
These predictions came
true for my officemates!
These predictions came
true for my officemates!research leaders, and high-tech entrepreneurs, so I am humbled to have

been in their presence for a summer.

∼

The story of how I arrived at MSR that summer illustrates the im-

portance of combining concrete achievements with professional con-

nections. Many Ph.D. students get internships (and later full-time

jobs) through some sort of connection, and I was no exception.

I first applied to be an intern at MSR during my second year while I

was working with Scott and Joel on their HCI programming lab study

project. I applied through regular channels by submitting my resume Online submission forms
are black holes. Anything
is better than blindly
submitting online.

Online submission forms
are black holes. Anything
is better than blindly
submitting online.

online, and my application was quickly rejected in favor of those stu-

dents with more publications and usually some inside connections.

One year later, during my third year, an MSR researcher saw that

my work with Scott and Joel had been published in an HCI confer-

ence, so he emailed me to ask whether I was interested in doing an

internship with him on a loosely related project. He sought me out in If I didn’t do a great job
during my first under-
graduate research project
and keep in touch with
my supervisor throughout
the years, then this lucky
connection wouldn’t have
happened.

If I didn’t do a great job
during my first under-
graduate research project
and keep in touch with
my supervisor throughout
the years, then this lucky
connection wouldn’t have
happened.

particular because my first undergraduate research supervisor at MIT

had introduced us to one another several years earlier, so he had some

recollection of who I was.

I was honored by his offer but told him that I was no longer working

on HCI research; by then, I had already gone back to bug-finding

work with Klee. However, I expressed a strong interest in working on

empirical software measurement research at MSR, since I had spent

my second year doing that sort of work with Dawson. He immediately

forwarded my resume to his colleague Tom, who was a rising star in

http://www.pgbovine.net/projects/pubs/brandt_chi09_webuse.pdf
http://www.pgbovine.net/projects/pubs/brandt_chi09_webuse.pdf

48 The Ph.D. Grind

the empirical software measurement subfield. After introducing myself

via email, I sent Tom the short paper that I coauthored with DawsonHaving a published pa-
per was crucial here,
since I could point Tom
to a vetted document
instead of just rambling
about my idle specula-
tions on this topic.

Having a published pa-
per was crucial here,
since I could point Tom
to a vetted document
instead of just rambling
about my idle specula-
tions on this topic.

from our Linux bug report measurement work. Tom liked my paper,

so he decided to hire me as his summer intern. I had read several of

Tom’s research papers during my second year, so I was very excited

about the possibility of working with him.

If I had blindly submitted my resume online like hundreds of other

applicants, I would have probably not been able to attract Tom’s at-

tention. Most of my fellow interns also got their jobs through connec-

tions, although usually their advisors made a direct recommendation

to a relevant MSR colleague. Interestingly, it wasn’t Dawson, butIt’s important not to di-
rectly seek out influential
people to schmooze with,
since that rarely works.
When I worked with Eric
on this research project
over six years earlier,
he was an unknown
new professor in another
department. I worked
with him because I en-
joyed the project and our
weekly interactions, not
because I wanted some
hypothetical schmoozy
connection in the dis-
tant future. But it turned
out that he became more
famous as the years pro-
gressed, which was lucky
for me. Again, none of
this was pre-planned.

It’s important not to di-
rectly seek out influential
people to schmooze with,
since that rarely works.
When I worked with Eric
on this research project
over six years earlier,
he was an unknown
new professor in another
department. I worked
with him because I en-
joyed the project and our
weekly interactions, not
because I wanted some
hypothetical schmoozy
connection in the dis-
tant future. But it turned
out that he became more
famous as the years pro-
gressed, which was lucky
for me. Again, none of
this was pre-planned.

rather one of my undergraduate research supervisors (from a project

I did over six years earlier) who provided the much-needed connection

for me. This same supervisor would later provide a crucial introduc-

tion that led to my first full-time job after graduation. From this

experience, I learned about the importance of being endorsed by an

influential person; simply doing good work isn’t enough to get noticed

in a hyper-competitive field.

∼

Tom defined the high-level scope of my internship project and set

a realistic yet ambitious goal of submitting a paper to a top-tier con-

ference at the end of the summer. My project was to quantify people-

related factors that affect whether software bug reports are success-

fully fixed, reassigned to others, or reopened after supposedly being

fixed. To obtain these insights, I wrote computer programs to analyze

software bug databases and employee personnel data sets within Mi-

crosoft. I was well-prepared to do this sort of data mining and analysis

work, since I had spent most of my second year doing similar analyses

with Dawson on Linux bug report and revision control history data.

Tom would drop by my office at 5pm each afternoon before he left

work to check up on my progress. Although daily check-ups could

http://www.pgbovine.net/projects/pubs/guo_usenix09_camera_ready.pdf

Intermission 49

potentially be stressful, I actually found them immensely helpful since

Tom wasn’t intimidating or judgmental at all. Getting immediate

daily feedback made it easy for me to stay focused and motivated. The

combination of a well-defined, short-term goal and continual helpful This is an unbeatable
combination, and one
that I try to provide for
my own students.

This is an unbeatable
combination, and one
that I try to provide for
my own students.

feedback made my internship workdays much more productive than

those during my previous three years of grad school. The best part

was that I worked only during normal office hours (9am to 6pm). There

was no possible way to take my work home with me since the data was

available only within Microsoft, so I just chilled every evening and had

fun without worrying about whether I ought to be working more; back

at school, I constantly worried about whether I was working enough

since I could potentially be working during all waking moments.

Since Tom had published and reviewed dozens of empirical soft-

ware measurement papers, he was definitely an “insider” who knew

what sorts of results and write-ups were well-liked by reviewers in

that subfield. When it came time to submit our paper at the end

of the summer, Tom was able to deftly frame our contributions in

the context of related work, argue for why our results were novel and

significant, and get our paper as polished as possible. Three months

later, I was delighted to learn that our paper on studying causes of

bug fixes was accepted at a top-tier conference where only 14 percent

of all papers submitted that year were accepted.

But Tom wasn’t done yet! Since he was a newly-hired researcher Hunger for success +
Youthful energy
Hunger for success +
Youthful energy

at MSR, he was eager to establish his reputation by publishing more

follow-up papers. Over the next few years, we used the results from

my summer 2009 internship to write two additional top-tier conference

papers, one about bug report reassignments and another about bug

report reopenings (which won a Best Paper Award).

∼

http://www.pgbovine.net/projects/pubs/guo_icse10_camera_ready.pdf
http://www.pgbovine.net/projects/pubs/guo_icse10_camera_ready.pdf
http://www.pgbovine.net/projects/pubs/guo_cscw11.pdf
http://www.pgbovine.net/projects/pubs/zimmermann_icse12_seip.pdf
http://www.pgbovine.net/projects/pubs/zimmermann_icse12_seip.pdf

50 The Ph.D. Grind

My success in doing empirical software measurement research at

MSR with Tom (resulting in three top-tier papers) was a satisfying

redemption from the failures that I had experienced when working

in this same subfield throughout my second year (resulting in two

rejections followed by a shorter-length, second-tier paper). Since I had

not grown much smarter between those two contrasting experiences,

I give most of the credit for my internship project’s success to two

sources: Microsoft and Tom.

First, as an intern at MSR, I had access to a rich array of internal

data sets about Microsoft’s software bugs and personnel files. There

was no way that I could have gotten access to those confidential data

sets as an outsider. The richness of the Microsoft data sets enables

MSR researchers such as Tom to more easily obtain groundbreaking

publishable results than their competitors who don’t have access to

such data. In contrast, when I was working with Dawson, the LinuxAll university researchers
face this limitation un-
less they partner with a
company.

All university researchers
face this limitation un-
less they partner with a
company.

data sets I obtained were much smaller and of lower quality, since open-

source software projects usually don’t maintain records as meticulously

as one of the world’s largest software companies.

Second, Tom deserves lots of credit: Since he was a veteran insider

in the empirical software measurement subfield, he knew how to advise

me as a technical mentor and also how to craft the nuances of our paper

submissions to maximize their chances of acceptance. In contrast,

Dawson was an outsider who merely had a passing interest in these

topics, so he had neither the motivation nor the abilities to advise

projects in this subfield (even though he was world-famous in another

subfield—software bug-finding).

During my second year, I lamented about how hard it was for Daw-

son and me to publish our work, since we had to compete with hordes

of professionals who specialized in empirical software measurement.

Now, it felt amazing to finally experience what it was like to be on theAnother redeemer.Another redeemer.

winning team working alongside one of those professionals.

∼

Intermission 51

Even though I had a wonderful summer “intermission” from my

Ph.D. program, I still didn’t have any plans for my dissertation project

when I returned to Stanford in the fall. All I knew was that I didn’t

want to keep working on Klee, but I had no idea what I could do that

was both personally motivating and, more importantly, publishable.

I contemplated trying to extend my current internship work into

my dissertation. However, I ultimately concluded that it would be too

hard to publish more papers once I returned to Stanford and no longer

had access to Microsoft’s internal data sets. In an ideal world, I would

have been able to do all of my dissertation work within MSR. This Some Ph.D. students at
the University of Wash-
ington are able to pull
this off since they are
right next door to MSR.

Some Ph.D. students at
the University of Wash-
ington are able to pull
this off since they are
right next door to MSR.

option didn’t seem feasible, though, since I didn’t know any students

who had previously done so.

As a last-ditch effort, I contacted my former internship manager

at Google to ask whether I could become an intern again and ac-

cess Google’s internal software bug data sets to do empirical software

measurement research. He seemed receptive to my idea, but I didn’t

follow-up with the proposal since it seemed unlikely to pan out: He

wasn’t an academic researcher himself, and I didn’t know anybody else

at Google who would be willing to support such a special arrangement.

Thus, I decided not to pursue empirical software measurement for my

dissertation, so the three papers that I eventually published from my But those papers did
help add breadth to
my C.V., which came
in handy later when I
(unexpectedly) applied to
faculty jobs.

But those papers did
help add breadth to
my C.V., which came
in handy later when I
(unexpectedly) applied to
faculty jobs.

MSR internship didn’t help me graduate. However, this experience

was still useful for improving my research and technical writing skills.

Desperate to generate another plausible dissertation idea, I spent

my nights and weekends throughout the summer reading research pa-

pers and brainstorming at coffee shops. At one point, I even thought

about creating a dissertation project based on Klee-like ideas but with-

out using the Klee tool itself. This scheme would allow me to free

myself from Klee while still capturing some of Dawson’s interest. Un-

fortunately, I wasn’t able to generate any substantive ideas along those

lines that hadn’t already been published.

52 The Ph.D. Grind

And then, on July 24, 2009—halfway through my internship—

inspiration suddenly struck. In the midst of writing computer pro-

grams in my MSR office to process and analyze data, I came up with

the initial spark of an idea that would eventually turn into the first

project of my dissertation. I frantically scribbled down pages upon

pages of notes and then called my friend Robert to make sure myI remember taking that
call in the stairwell at
MSR and talking his ear
off. Bystanders probably
thought I was nuts.

I remember taking that
call in the stairwell at
MSR and talking his ear
off. Bystanders probably
thought I was nuts.

thoughts weren’t totally ludicrous. At the time, I had no sense of

whether this idea was going to be taken seriously by the wider aca-

demic community, but at least I now had a clear direction to pursue

when I returned to Stanford to begin my fourth year.

Year Four: Reboot

Throughout my second year of Ph.D. and my summer 2009 intern- Reboot is my favorite
chapter title.
Reboot is my favorite
chapter title.

ship at MSR, I performed empirical software measurement research

by writing computer programs in a popular language called Python

to process, analyze, and visualize data sets. After writing hundreds

of these sorts of Python programs, I noticed that I kept facing similar

inefficiencies over and over again. In particular, I had to tediously

keep track of a multitude of data files on my computer and which

programs they depended upon; I also needed to make my programs

unnecessarily complex so that they could execute (run) quickly after

each round of incremental changes to my analyses. After letting these

observations simmer in the back of my mind during the summer, the

following idea suddenly came to me on that quiet July afternoon at

MSR: By altering the Python run-time environment (called an in-

terpreter) in some innovative ways, I could eliminate many of these

inefficiencies, thereby improving the productivity of computational re-

searchers who use Python. I named my proposed modification to the

Python interpreter “IncPy,” which stands for Incremental Python. Pronounced like “inc-pie”,
not “inc-pee”
Pronounced like “inc-pie”,
not “inc-pee”

∼

Like any pragmatic researcher, the first thing I did after coming up

with my IncPy idea (after calming down from the initial excitement)

was to frantically search the Web for research papers describing related

53

54 The Ph.D. Grind

work. Thankfully, nobody had created exactly what I was planning

to create, but there were some past research projects with a similar

flavor. That was fine, though; no idea is truly original, so there will

always be related projects. However, in order to eventually publish,

I had to make a convincing case for how IncPy was different enough

from similar projects. Within a few days, I had sketched out an initialThis is very important to
do before diving in and
starting to code.

This is very important to
do before diving in and
starting to code. project plan, which included arguments for why IncPy was unique,

innovative, and research-worthy.

Since I still had over a month left at MSR, I took advantage of

the fact that I was around lots of smart colleagues who were also per-

forming similar kinds of data analysis programming for their research.

I grabbed coffee with several colleagues and interviewed them about

their data analysis work habits and inefficiencies. I then pitched them

my IncPy idea and discussed possible refinements to make it both more

useful and also more interesting from a research perspective. These

early conversations helped boost my confidence that I was on the right

track, since other people shared my frustrations with performing data

analysis and my enthusiasm for the ideas that IncPy embodied.

For the rest of the summer, I spent my nights and weekends at

coffee shops refining my fledgling IncPy idea, strengthening its “mar-

keting pitch,” and getting more feedback from MSR colleagues. I

emailed drafts of my idea to Dawson, but I didn’t actually care how

enthusiastic he was about it since this was going to be my own under-

taking. I wasn’t asking for his permission; I was just informing himAgain, I could do this
only because I was self-
funded by fellowships at
the time.

Again, I could do this
only because I was self-
funded by fellowships at
the time.

about what I planned to do once I returned to Stanford in the fall.

∼

I rebooted my Ph.D. career as I began my fourth year at Stanford,

severing my ties to the previous three years and starting anew. No

more working on already-established research projects, no more try-

ing to scheme up ways to align with the supposed interests of professors

Year Four: Reboot 55

and senior colleagues, and no more worrying about what kinds of re-

search the academic establishment liked to see. I was now hell-bent on The biggest impact of
my MSR internship was
providing me with the
conditions to come up
with the idea for IncPy.

The biggest impact of
my MSR internship was
providing me with the
conditions to come up
with the idea for IncPy.

implementing my new IncPy idea, turning it into a publishable paper,

and making it the first part of my dissertation.

Although I was filled with newfound excitement and passion, a part

of me was scared because I was breaking away from the establishment

to do something new and unproven without any professor support.

Most Ph.D. students in my department work on projects that their Most Ph.D. students in
all places do this.
Most Ph.D. students in
all places do this.

advisors or other professors are interested in, since it’s much easier to

publish papers with the help of professors’ enthusiasm and expertise.

However, even without professor backing, my hunch was that IncPy

could become a publishable idea; I had accumulated enough battle

scars from the past three years of research failures to develop better

intuitions for which ideas might succeed. Trusting this gut instinct Around this time, one
of the remaining Klee
students wanted me to
help him on a paper
submission as a non-
lead author. Good thing
I turned him down to
push forward on my
own with IncPy; it would
take him four more years
of grinding before pub-
lishing that paper.

Around this time, one
of the remaining Klee
students wanted me to
help him on a paper
submission as a non-
lead author. Good thing
I turned him down to
push forward on my
own with IncPy; it would
take him four more years
of grinding before pub-
lishing that paper.

became the turning point of my Ph.D. career.

On a pragmatic note, I still kept Dawson as my advisor since he

was okay with me doing my own project and occasionally giving me

high-level feedback on it. Since I was still self-funded by fellowships, I

didn’t have an obligation to continue working on Klee like the rest of

Dawson’s students did. My relationship with Dawson was much more
In retrospect, I couldn’t
have asked for a better
advisor for the second
half of my Ph.D. Many
professors would’ve
wanted to push their
research agenda on me.
But since I wasn’t work-
ing on Klee and was self-
funded, Dawson let me
go off and do my own
thing without complaint.

In retrospect, I couldn’t
have asked for a better
advisor for the second
half of my Ph.D. Many
professors would’ve
wanted to push their
research agenda on me.
But since I wasn’t work-
ing on Klee and was self-
funded, Dawson let me
go off and do my own
thing without complaint.

hands-off throughout the rest of my Ph.D. years. We probably met

less than a dozen times to talk about research; I was mostly working

on my own or seeking out collaborations with others. I didn’t want to

formally switch advisors, because then I would need to “pay my dues”

all over again with a new research group. Besides, I didn’t know of any

professors in my department who were excited by IncPy-like ideas, or

else I might have contemplated switching.

To eventually graduate, I needed to form a thesis committee con-

sisting of three professors who agree to read and approve my disserta-

tion. Most students simply have their advisors choose committee mem-

bers for them, since they are working on “official” advisor-sanctioned

projects. Since I was going rogue and not working on Dawson’s Klee

56 The Ph.D. Grind

project, I didn’t have that luxury. I tried hard to find professors both

in my own department and in other related departments (e.g., statis-

tics, bioinformatics) to serve on my committee. I cold-emailed a few

professors and attempted to reach others via their current students. II can now see why this
plan was doomed to fail.
No professor wants to
join a random committee
for a student they don’t
even know, especially one
in another department.

I can now see why this
plan was doomed to fail.
No professor wants to
join a random committee
for a student they don’t
even know, especially one
in another department.

even made a PowerPoint slide deck to pitch my dissertation proposal

to potential committee members, but unfortunately, no professor was

interested in meeting with me. However, instead of giving up and

crawling back to a traditional project with more institutional support,

I took a risk by marching forward with IncPy and hoping that the

thesis committee issue would sort itself out later.

∼

Taking inspiration from my HCI (Human-Computer Interaction)

work with Scott and Joel during my second year, as soon as I returned

to Stanford in the fall of 2009, I began interviewing colleagues who

wrote Python programs to analyze data for their research. My goal

was to discover what their programming-related inefficiencies were,

and how IncPy could eliminate those inefficiencies. I also had some

friends arrange for me to give talks on IncPy—which was only a half-

baked idea at the time—at their lab group meetings. My initiative

in conducting interviews and making presentations at this preliminary

stage was helpful both for providing fresh ideas and also for refining

IncPy’s “marketing pitch.” I’m immensely grateful for the friends whoMy fellow grad students
were much more helpful
than professors were in
this regard, both because
they could relate better
to me and because they
had far more free time to
indulge my curiosities.

My fellow grad students
were much more helpful
than professors were in
this regard, both because
they could relate better
to me and because they
had far more free time to
indulge my curiosities.

helped me get my project off the ground when I had nothing to show

except for a few shabby PowerPoint slides.

I grew more and more encouraged as I found out that researchers in

a variety of computation-based fields such as machine learning, phar-

macology, bioengineering, bioinformatics, neuroscience, and ocean en-

gineering all performed similar sorts of data analysis for their research

and could benefit from a tool such as IncPy. After a few weeks of inter-

views and subsequent refinements to my design plans, I felt confident

that I had a good enough pitch to “sell” the project convincingly in

Year Four: Reboot 57

a future paper submission. The argument I wanted to make was that

lots of computational researchers in diverse fields struggle with several

common inefficiencies in their daily programming workflow, and IncPy

provides a new kind of fully automated solution to such inefficiencies

that nobody else has previously implemented. This initial pitch would

later evolve into the theme of my entire dissertation.

With an overall strategy in place, I was ready to begin the thou-

sands of hours of hard labor—grinding—required to turn IncPy from

an idea into a real working prototype tool. I had spent the end of

my summer playing the “professor role” of sketching out high-level

designs, giving talks, and refining conceptual ideas. Now I was ready

to play the “student role” of massively grinding throughout the next

year to implement IncPy.

∼

By now it should be clear that having a good idea is necessary

but nowhere near sufficient for producing publishable research. Ju-

nior researchers—usually Ph.D. students—must spend anywhere from

hundreds to thousands of hours “sweating the details” to bring that

idea to fruition. In computer science research, the main form of labor

is performing computer programming to build, test, and evaluate new

software-based prototype tools and techniques. The nearly ten thou-

sand hours I had spent doing many types of programming over the past

decade—in classroom, hobby, research lab, and engineering internship

settings—prepared me to endure the intensely intricate programming

required to implement research ideas such as IncPy.

Implementing IncPy involved some of the grimiest programming

grind that I had ever done. If I didn’t have all of those hours of

trial-by-fire training over the past decade, then I would have never

even attempted such a labor-intensive project. Other people have un-

doubtedly recognized the same inefficiencies that I observed in com-

putational research workflows, but what set me apart from would-be

58 The Ph.D. Grind

competitors was that these people didn’t have the deep programming

expertise required to create a fully automated solution such as IncPy.Without the proper ex-
pertise, they wouldn’t
even think about creating
a fully automated solu-
tion in the first place.
Expertise opens the door
to new creative outlets.

Without the proper ex-
pertise, they wouldn’t
even think about creating
a fully automated solu-
tion in the first place.
Expertise opens the door
to new creative outlets.

At best, they might create semi-automated solutions that would not

be substantive enough to publish in a respectable conference.

Even though I wasn’t in love with my previous research projects

earlier in grad school and during college, the technical skills and judg-

ment that I gained from those experiences made it possible for me

to now implement my own ideas that I truly cared about. Over the

next three years (2009 to 2011), I grinded non-stop on creating five

new prototype tools to help computational researchers (IncPy was the

first), published one or more first-author papers describing each tool,

and then combined all of that work together into a Ph.D. dissertation

that I was extremely proud of. Those three years—my latter half of

grad school—were the most creative and productive of my life thus

far, in stark contrast to my meandering first half of grad school.

I became fiercely self-driven by an enormous amount of productiveToo much rage is debili-
tating; but just the right
amount of controlled rage
can be a great motivator.

Too much rage is debili-
tating; but just the right
amount of controlled rage
can be a great motivator.

rage. I turned steely, determined, and ultra-focused. Every time I

reflected back on the inefficiencies, failures, and frustrations that I had

endured during my first three years of grad school, I would grow more

enraged and push myself to grind even harder; I was motivated by an

obsessive urge to make up for supposedly lost time. Of course, those

early years weren’t actually lost; without those struggles, I wouldn’t

have gained the inspiration or abilities to create the five projects that

comprised my dissertation.

∼

However, as I was about to begin my fourth year of Ph.D. in

September 2009, I had no sense of what awaited me in the future

and definitely no grand plans for a five-project, 230-page dissertation.

I didn’t even know whether any professors would take my unproven

ideas seriously enough to agree to serve on my thesis committee. All I

Year Four: Reboot 59

wanted to do was implement IncPy, try to get it published, and then

figure out my next move when the time came.

I was about to start implementing (programming) IncPy when an

unexpected bit of fortune struck. At the time, I had no idea that this

one minor event would lead to a cascade of other good luck that would

pave the way for my graduation. One day at lunch, my friend Robert Random conversations
with my grad school
friends led to tons of
unexpected inspiration.

Random conversations
with my grad school
friends led to tons of
unexpected inspiration.

told me he was planning to submit a paper about his new research

project to a workshop whose deadline was in 2.5 months.

Normally, I wouldn’t have thought twice about such an announce-

ment for two reasons: First, Robert’s research topic (in a subfield

called data provenance) was unrelated to IncPy, so where he planned to

submit papers had no relevance to me. Second, a published workshop

paper usually does not “count” as a dissertation contribution in our

department. Workshop papers are meant to disseminate early ideas

and are not scrutinized as rigorously as conference papers. Whereas a

conference paper submission has an 8 to 30 percent chance of accep-

tance, a workshop paper submission has a 60 to 80 percent chance.

Most professors in our department don’t encourage students to sub-

mit to workshops, since if the paper gets accepted (which is likely),

the professor must pay around $1,500 of travel, hotel, and registration

costs using their grant money for the student to attend and give a

talk at the workshop. It costs about as much to send a student to

a workshop as to a conference, and conference papers are much more

prestigious both for the student and the professor. Thus, top-tier com- That said, having work-
shop papers can be a
path toward “pity grad-
uation” because it’s still
better than having no
published papers.

That said, having work-
shop papers can be a
path toward “pity grad-
uation” because it’s still
better than having no
published papers.

puter science professors strongly encourage students to publish more

selective conference papers and eschew workshops altogether.

I asked Robert why his advisor encouraged him to submit his early-

stage idea to a workshop rather than developing it further and sub-

mitting to a conference at a later date. He said that it was partly out

of convenience, since the workshop was located in nearby San Jose.

His entire research group planned to attend since it was only 20 miles

from Stanford, so he also wanted to present a paper there.

60 The Ph.D. Grind

Out of curiosity, I looked at the workshop’s website to see whatI wouldn’t have gotten
lucky if I hadn’t followed
my curiosity at that mo-
ment. Part of luck is
always keeping your eyes
open for new opportuni-
ties while simultaneously
focusing enough to make
consistent progress.

I wouldn’t have gotten
lucky if I hadn’t followed
my curiosity at that mo-
ment. Part of luck is
always keeping your eyes
open for new opportuni-
ties while simultaneously
focusing enough to make
consistent progress.

topics were of interest to the organizers. Although it was a workshop

on data provenance (Robert’s research area), the topics list included a

bullet point entitled “efficient/incremental recomputation.” I thought

to myself: Hmmm, IncPy provides efficient incremental recomputation

for Python programs, so if I pitch my paper properly, then maybe it’s

sort of appropriate for this workshop! Since I didn’t need to travel

to attend the workshop, I wasn’t afraid to ask Dawson to pay for my

registration fee if my paper was accepted. I emailed Dawson my plans

to submit a paper to this workshop, and he wrote back with a luke-

warm response. As expected, he wasn’t enthusiastic about workshops

in general, but he was okay with me submitting since he respected the

workshop’s program committee co-chair, a Harvard professor named

Margo (who would later play a pivotal role in helping me to graduate).If I hadn’t met Margo, I
wouldn’t be a professor
right now. No joke.

If I hadn’t met Margo, I
wouldn’t be a professor
right now. No joke.

The timing was perfect: I now had 2.5 months to super-grind on

implementing a first working prototype of IncPy and then write a

workshop paper submission. Since I knew that the bar for workshop

paper acceptance was a lot lower than for a conference paper, I wasn’t

too stressed. I just needed to get a basic prototype working reason-

ably well and anecdotally discuss my experiences. I discovered that

this strategy of finding and setting short-term deadlines for myself

would work wonders in keeping me focused throughout the rest of my

Ph.D. years. Without self-imposed deadlines, it becomes easy to fall

into a rut and succumb to chronic procrastination.

My paper was accepted with great reviews, and I attended the

workshop in February 2010 to give a 30-minute talk on it. In par-

ticular, I was honored that Margo, the program committee co-chair,

personally praised my paper and mentioned how it was related to aOne benefit of presenting
a talk on a paper is that
people can chat with you
about it afterward, which
can lead to serendipity.

One benefit of presenting
a talk on a paper is that
people can chat with you
about it afterward, which
can lead to serendipity.

new Python-based project that her student Elaine was starting. Since

Elaine wasn’t at the workshop, Margo gave me Elaine’s email address

and suggested for us to get in touch.

http://www.pgbovine.net/projects/pubs/guo_tapp10_camera_ready.pdf

Year Four: Reboot 61

At first, I was afraid that Elaine would be my direct competition

and publish a conference paper before I did, which would make it

harder for me to publish a conference paper on IncPy: Since being

first is highly valued in academia, once another researcher publishes

a similar idea and “scoops” you, then it becomes much harder to get

your own idea published. But after exchanging some reconnaissance

emails and video chatting with her, I was relieved to find out that she

didn’t have plans to gear up for a conference paper submission. Also,

her tool lacked the fully automatic capabilities that set IncPy apart

from related work. Once we realized that we weren’t rivals, we quickly

became friends. I’m glad that Elaine and I kept in touch over the next

few years, since she would be partially responsible for reuniting me

with Margo towards the end of my Ph.D. journey.

∼

Although giving a talk on my IncPy workshop paper was great for

getting feedback and especially for meeting Margo, that paper didn’t

count as a “real” publication for my dissertation. I knew that I still

needed to publish this work in a conference that professors in my de-

partment recognized as legitimate. The biggest difference between a

workshop and a conference paper is that a conference paper must have

a convincing experimental evaluation that shows the effectiveness of

the tool or technique being described in the paper. A paper’s eval-

uation section can come in many flavors ranging from measurements

of run-time performance to a controlled laboratory study of user be-

havior. Since many researchers come up with similar ideas, reviewers

carefully scrutinize how those ideas are implemented and experimen-

tally evaluated when deciding which papers to accept or reject.

Even at the start of my IncPy project, I knew that it would be diffi-

cult to present a convincing evaluation because the argument I wanted

to make—that IncPy can improve the productivity of computational

researchers—was a subjective and fuzzy notion. After reading several

62 The Ph.D. Grind

other papers that presented similar productivity improvement claims,

I devised a two-part evaluation strategy:

1. Case Studies: Get a collection of programs written in the Python

language from a variety of computational researchers and then

simulate the productivity improvements they would have achieved

if they had used IncPy during their research rather than regular

Python.

2. Deployment: Get some researchers to use IncPy rather than reg-

ular Python in their daily work and have them report if and how

IncPy improved their productivity.

The next relevant top-tier conference submission deadline was in

seven months, so I aimed to have a paper ready by then. I spentin September 2010, right
at the end of Year Four
in September 2010, right
at the end of Year Four

lots of time trying to find case study subject programs and potential

users for deployment. Without those, there would be no evaluation,

no conference publication, no dissertation, and no graduation. (Of

course, I still spent the majority of my waking hours doing grimy

programming, debugging, and testing to implement IncPy.)

I learned to be part-salesman and part-beggar, persistently asking

colleagues whether they had Python programs I could use for case

studies or, even better, whether they would be willing to install and use

IncPy on a daily basis for their research and report their impressions

to me. As expected, I mostly got “No” replies, but I politely asked for

recommendations of other people I could contact. I also invited myself

to give several more talks at various lab group meetings to drum up

interest in IncPy. After a few months of “begging,” I obtained Python

programs from half a dozen researchers in a diverse variety of fields,

which was enough to begin my case studies. I appreciated everyone

who helped me out during that time, since they had nothing to gain

besides the goodwill of an unknown Ph.D. student.

∼

Year Four: Reboot 63

Although case studies might have been sufficient for the evalua-

tion section of my paper submission, what I truly craved was deploy-

ment—getting real researchers to use IncPy. Not only did I feel that

deployment would make for a stronger evaluation, but more impor-

tantly, I genuinely believed that IncPy could improve the day-to-day

productivity of computational researchers. The majority of research

prototype tools are built to demonstrate a novel idea and then dis-

carded, but I wanted IncPy to be practical and enduring. I didn’t just

dream up IncPy in a vacuum for the sake of publishing papers; it was

inspired by real-world problems I faced when performing programming

for my research, so I wanted real-world people to actually use it.

In spite of my idealism, I understood why almost no research pro-

totype tools get successfully deployed. The underlying reason is that

people don’t want to try a new tool unless they can instantly see

major benefits without any drawbacks; researchers simply don’t have For the sake of their
fledgling careers, young
researchers must pri-
oritize publishing new
papers rather than main-
taining old software.

For the sake of their
fledgling careers, young
researchers must pri-
oritize publishing new
papers rather than main-
taining old software.

the time or resources to get their prototypes working well enough to

meet these stringent requirements. In particular, my target users are

happy enough using regular Python—despite its inefficiencies—that

they don’t want to take a risk by switching to IncPy. To convince

someone to try IncPy, I would need to guarantee that it works better

than regular Python in all possible scenarios. While that’s true in

theory, in reality IncPy is a research prototype tool being maintained

by one student, so it’s bound to have numerous bugs. In contrast, the

official Python project is over twenty years old and being maintained

by hundreds of veteran programmers, so it’s much more stable and

reliable. As soon as someone hits a single IncPy bug, they will imme-

diately dismiss it as lame and switch back to using regular Python. I

knew the odds were against me, but I didn’t care.

After failing to find anybody at Stanford who was willing to install

and use IncPy, I looked for leads at nearby universities. In March

2010, I cold-emailed a few Ph.D. students at UC Davis (a two-hour

drive from Stanford) who were friends with one of my former MSR

64 The Ph.D. Grind

intern colleagues. I appealed to their sense of altruism at helping outAgain, that MSR summer
kept paying dividends!
Again, that MSR summer
kept paying dividends!

a fellow grad student in need and managed to invite myself over for a

visit to advertise IncPy. A few gracious professors even agreed to meet

with me, including one I had met at the data provenance workshop.

Although I received more helpful feedback, I didn’t manage to find

any subjects for case studies or deployment.

I spent the night at UC Davis and planned to return to Stanford

the next morning. Then I thought of an impulsive idea—cold-emailingThis was one of the most
important cold-emails
of my life so far, since
it kickstarted several of
my dissertation projects.
And I just did it on a
whim, too. If I hadn’t
given that particular
talk on IncPy months
earlier, then that student
would’ve never seen it
and would’ve never told
me about Fernando’s
blog post. Again, talks
lead to serendipity.

This was one of the most
important cold-emails
of my life so far, since
it kickstarted several of
my dissertation projects.
And I just did it on a
whim, too. If I hadn’t
given that particular
talk on IncPy months
earlier, then that student
would’ve never seen it
and would’ve never told
me about Fernando’s
blog post. Again, talks
lead to serendipity.

Fernando, a research scientist at UC Berkeley who was passionate

about the use of Python in computational research. A few months

earlier, a fellow grad student who attended one of my IncPy talks

emailed me a link to one of Fernando’s blog posts, and I jotted down

a reminder to contact Fernando sometime in the future. Now seemed

like a good time: Since UC Berkeley was located between UC Davis

and Stanford, I could potentially drop by his office on the drive back

home. I cold-emailed Fernando and asked if he had time to chat the

next morning. It was a long shot, but he agreed to meet with me. I

had a wonderful initial one-hour meeting with Fernando; it felt greatFernando is the creator
of the IPython project for
scientific computing and
is a renowned figure in
the Python community.

Fernando is the creator
of the IPython project for
scientific computing and
is a renowned figure in
the Python community.

to see a well-established senior scientist support my IncPy idea.

The most significant outcome of our first meeting was that Fer-

nando invited me to return to UC Berkeley the following month to

give a talk on IncPy. He told me that my audience would consist of

neuroscientists who were using Python to run their computational re-

search experiments. When I gave my one-hour talk, I was a bit taken

aback by three researchers continually interrupting and pestering me

with detailed questions about how well IncPy worked in practice. At

first, I thought those guys were being overly pedantic, but afterwards

they came up to me and expressed a strong interest in trying IncPy.Yet again, talks lead to
serendipity.
Yet again, talks lead to
serendipity.

They lamented about how they’re currently suffering from the exact

kinds of inefficiencies that inspired me to create IncPy in the first

place! It turned out that they weren’t trying to be annoying during

my talk; they just wanted to understand the details to assess whether

Year Four: Reboot 65

it was feasible to deploy IncPy on their research lab computers.

I was thrilled by the possibility of getting my first set of real users.

I exchanged some emails with them and offered to drive up to UC

Berkeley again to help them install and set up IncPy. My first email

started with a cautiously optimistic tone:

Thanks for expressing an interest in becoming the first real

user of my IncPy memoizing Python interpreter! I’m really

enthusiastic about getting IncPy to a state where you can use

it in your daily workflow. I think the main issues will be mostly

grunge work with installation / setup / configuration, which Predicted my downfall!Predicted my downfall!

I am more than happy to deal with in order to give you the

smoothest possible user experience.

By the time I tried installing IncPy on the Berkeley neuroscien-

tists’ computers, I had been building and testing it for seven months,

so I felt reasonably confident that it would work for them. However,

shortly after installation, we discovered that IncPy was not compatible

with dozens of third-party Python add-ons (called extension modules) This deep pain of dealing
with software dependen-
cies would later inspire
CDE, the new project I
started in Year Five.

This deep pain of dealing
with software dependen-
cies would later inspire
CDE, the new project I
started in Year Five.

that these scientists were using in their daily work. In my own pri-

vate testing, I tested only the basic use cases without any extension

modules. I was hit with a lesson in the harshness of real-world de-

ployment: failures come in unexpected forms, and once the user gets

a bad first impression, then it’s over! Like most researchers creating

prototypes in an ivory tower, I could have never predicted that this

unforeseen banal extension module issue would completely derail my

first deployment attempt.

I wasn’t about to give up, though. I spent the next few weeks

redesigning and reimplementing a critical portion of the IncPy code

so that it now worked perfectly with any arbitrary Python extension

modules. I emailed the UC Berkeley neuroscientists again to ask for a

second chance, but I got no response. I had one shot, and I blew it.

∼

66 The Ph.D. Grind

This disappointment spurred me to keep improving IncPy in prac-Productive rage again.Productive rage again.

tical ways: Along with fixing many subtle bugs, I created an IncPy

project website containing a short video demo, documentation, and

beginner tutorials. None of these hundreds of hours of effort made

any improvements to my original research contribution, but they were

necessary if I wanted to get real user anecdotes for an evaluation sec-

tion of a future paper submission.

After a few months passed, three strangers from different parts of

the world found IncPy via its website, downloaded a copy, and used it

to speed up some of their research programming activities. Although

three is a pathetically small number of users, at least it’s more than

zero, which is the number of users most research prototypes have. I

felt satisfied that IncPy was in a polished enough state—thanks to my

post-Berkeley improvements—that strangers were now able to use it

without my guidance. These three people emailed me anecdotes about

how they found IncPy to be mildly useful for some parts of their work.

Their anecdotes weren’t strong evidence of effectiveness, but they were

better than nothing.

As my fourth year of Ph.D. came to an end in September 2010, II stayed on campus in
the summer of 2010 to
keep working on IncPy.

I stayed on campus in
the summer of 2010 to
keep working on IncPy. submitted my IncPy paper to a top-tier conference with an evaluation

consisting of case studies and three brief deployment anecdotes. Only

14 percent of papers submitted to that same conference last year were

accepted. Thus, I knew that my paper would most likely be rejected,

both due to those meager odds and especially since IncPy didn’t neatly

fit into any traditional academic subfield. Nonetheless, it was still

wise to first aim for the top tier and then resubmit to a second-tier

conference if necessary, since a top-tier publication would carry more

weight in my future graduation case.

I still didn’t have a clearly paved path to graduation, but at least I

was able to start taking charge of my own research agenda rather than

tagging along on other people’s projects. I was happy that within the

past year, I had turned IncPy from the spark of an idea in my mind into

http://www.pgbovine.net/incpy.html

Year Four: Reboot 67

a semi-practical tool that benefited three strangers who downloaded it Going from zero to non-
zero number of users
was a transformative
moment that inspired me
to build future pieces
of software that people
want to use, despite
that not being part of
my official job as an
academic researcher.

Going from zero to non-
zero number of users
was a transformative
moment that inspired me
to build future pieces
of software that people
want to use, despite
that not being part of
my official job as an
academic researcher.

from the Internet. Even though this minor accomplishment wouldn’t

help my graduation case at all—professors respect real-world deploy-

ment far less than theoretical novelty—it was a somewhat satisfying

end to my fourth year.

68 The Ph.D. Grind

Year Five: Production

At the beginning of my fifth year (September 2010), I still had noth-

ing to include in my (nonexistent) dissertation. By now, most of my

classmates had published at least one dissertation-worthy first-author

conference paper. Since I didn’t have any dissertation-worthy papers

yet (the IncPy paper was still under review), I was afraid that it would Several of my friends
in the department took
seven or eight years to
graduate. One of my
former officemates just
graduated after nine
years (2005–2014).

Several of my friends
in the department took
seven or eight years to
graduate. One of my
former officemates just
graduated after nine
years (2005–2014).

take me seven or eight total years to graduate.

Within the next twelve months, though, I would publish four con-

ference papers and one workshop paper (all as the first author), thereby

paving a clear path for my graduation. Without a doubt, my fifth year

was my most productive of grad school. I was relentlessly focused.

∼

In the middle of summer 2010, progress on IncPy was steady, and I

was on track to submitting a paper by the September deadline. How-

ever, I knew that IncPy would not be substantive enough for an entire

dissertation. So besides working towards the upcoming paper dead-

line, I also spent some time thinking about my next project idea.

I wish I could say that my solo brainstorming sessions were moti-

vated by a true love for the pure essence of academic scholarship. But

the truth was that I was driven by straight-up fear: I was afraid of not

being able to graduate within a reasonable time frame, so I pressured

myself to come up with new ideas that could potentially lead to pub-

69

70 The Ph.D. Grind

lications. I was all too aware that it might take two to three years for

a paper to get accepted for publication, so if I wanted to graduate by

the end of my sixth year, I would need to submit several papers this

year and pray that at least two get accepted. I felt rushed because

my fellowship lasted only until the end of this year. After my fundingI had five total years of
funding from the NSF
and NDSEG fellowships.

I had five total years of
funding from the NSF
and NDSEG fellowships. expired, I would need to either find grant funding from a professor and

face all of the requisite restrictions (e.g., working on Klee again), orIt would be hard to
plead for a zero-paper
pity graduation since I
wasn’t working on an
advisor-sanctioned project
at the time, so nobody
would vouch for me.

It would be hard to
plead for a zero-paper
pity graduation since I
wasn’t working on an
advisor-sanctioned project
at the time, so nobody
would vouch for me.

else become a perpetual teaching assistant and delay my graduation

even further. Time was running out.

On July 29, 2010, almost exactly one year after I conceived the ini-

tial idea for IncPy, I came up with a related idea, again inspired by real

problems that computational researchers encounter while performing

data analysis. I observed that because researchers write computer

programs in an ad-hoc “sloppy” style, their programs often crash for

silly reasons without producing any analysis results, thus leading to

table-pounding frustration. My insight was that by altering the run-

time environment (interpreter) of the Python programming language,

I could eliminate all of those crashes and allow their sloppy programs

to produce partial results rather than no results. I named this pro-

posed modification to the Python interpreter “SlopPy,” which stands

for Sloppy Python.Pronounced “slop-pie”,
but “slop-pee” is fine too.
Pronounced “slop-pie”,
but “slop-pee” is fine too.

Although SlopPy and IncPy are very different ideas, I implemented

both by altering the behavior of the Python interpreter. The nearly

one thousand hours I had spent over the past year hacking (modifying)

the Python interpreter for IncPy gave me confidence that I could im-

plement SlopPy fairly easily. It took me only two months to create a

basic working prototype, run some preliminary experiments, and sub-

mit a paper to a second-tier conference. I aimed for that conference

both because its deadline was conveniently timed and also because I

didn’t think that SlopPy was a “big” enough idea to get accepted in

a top-tier conference.

∼

Year Five: Production 71

By October 2010, I had two papers under submission. At this

point, I had given up all hope of getting a job as a professor, since I

still had not published a single paper for my dissertation; competitive

computer science faculty job candidates have all already published a

few acclaimed first-author papers by this time in their Ph.D. careers.

Unless a miracle struck, I would not be able to get a respectable re- A miracle did strike to
land me a faculty job,
but that happened nearly
a year after I graduated.
There was no way to
foresee it back then.

A miracle did strike to
land me a faculty job,
but that happened nearly
a year after I graduated.
There was no way to
foresee it back then.

search university job, so I aimed to do only enough work to graduate

without worrying about how my resume would appear.

I received the opposite of a miracle: Both my IncPy and SlopPy pa-

per submissions were rejected. I was disappointed but not too shocked,

since I had already grown accustomed to paper rejections by this time.

There were lots of legitimate criticisms of my work, so I felt that ad-

dressing them would strengthen my future resubmissions.

Most notably, I had unwisely framed the pitch for IncPy in a way

that led to my paper being reviewed by researchers in a subfield that

wasn’t as “friendly” to my research philosophy. In theory, technical

papers should be judged on their merit alone, but in reality, reviewers

each have their own unique subjective tastes and philosophical biases.

So I drastically rewrote my introductory pitch with the aim of getting

more amicable reviewers and then resubmitted to a second-tier con-

ference to further improve its chances of acceptance. My plan worked,

and the IncPy conference paper was accepted—albeit with lukewarm

reviews—on my second submission attempt in early 2011.

I later revised and resubmitted my SlopPy paper to a workshop

that was being held together with the conference where I would be

presenting IncPy. This strategy worked well since it was far easier to

get a paper accepted in a workshop than in a conference. Also, Dawson

wouldn’t need to pay much extra for me to attend the workshop since I

was already going to the conference to present IncPy. As expected, the

SlopPy workshop paper was accepted, and although it didn’t “count”

as a standalone dissertation contribution, at least it was better than

no publication; I hoped to incorporate this paper as a smaller chapter

http://www.pgbovine.net/projects/pubs/guo_issta11_camera_ready.pdf
http://www.pgbovine.net/projects/pubs/guo_woda11_camera_ready.pdf

72 The Ph.D. Grind

in my dissertation to supplement the more substantive chapters, whichBy the second half of
Year Five, both the IncPy
and SlopPy papers were
published, which was a
relief. At least I didn’t
have to plead for a zero-
paper pity graduation.

By the second half of
Year Five, both the IncPy
and SlopPy papers were
published, which was a
relief. At least I didn’t
have to plead for a zero-
paper pity graduation.

would all derive from conference papers.

∼

Back in October 2010, right after submitting the IncPy and SlopPy

papers, I asked Dawson what it would take for me to graduate in the

next few years. Predictably, he replied that I needed publications

as proof of the legitimacy of my work. He did have one concrete

suggestion, though: Another dissertation-worthy project would be for

me to combine my interest in Python with Klee-like ideas that he loved

in order to create an automated bug-finding tool for Python programs.

Since I wasn’t keen on returning to Klee in any form, I discarded his

suggestion and continued thinking about possible extensions to IncPy

and SlopPy that could make for a follow-up paper submission.

By this time, a nascent dissertation theme was beginning to formHaving two related
projects enabled me to
see an emerging trend,
which I could keep rid-
ing into a third project.
Each subsequent project
was easier to develop
since it could build upon
my experiences with
the prior ones. Getting
started was the hardest
part, but thankfully my
MSR internship provided
the initial spark of inspi-
ration for IncPy.

Having two related
projects enabled me to
see an emerging trend,
which I could keep rid-
ing into a third project.
Each subsequent project
was easier to develop
since it could build upon
my experiences with
the prior ones. Getting
started was the hardest
part, but thankfully my
MSR internship provided
the initial spark of inspi-
ration for IncPy.

in my head: Both IncPy and SlopPy were software tools to improve

the productivity of computational researchers. Thus, to think of my

next project idea, I returned to identifying problems computational

researchers faced in their work and then designing new tools to address

those problems.

Specifically, I noticed that researchers edit and execute their Python

programs dozens to hundreds of times per day while running computa-

tional experiments; they repeat this process for weeks or months at a

time before making a significant discovery. I had a hunch that record-

ing and comparing what changed between program executions could

be useful for debugging problems and obtaining insights. To facilitate

such comparisons, I planned to extend IncPy to record details about

which pieces of code and data were accessed each time a Python pro-I didn’t end up imple-
menting rich sharable
experiment histories back
then, but those ideas
later inspired my Year
Six project and even my
faculty interview job talk.
Funny how dead ideas
can resurrect in unex-
pected forms.

I didn’t end up imple-
menting rich sharable
experiment histories back
then, but those ideas
later inspired my Year
Six project and even my
faculty interview job talk.
Funny how dead ideas
can resurrect in unex-
pected forms.

gram executes, thereby maintaining a rich history of a computational

experiment. I also thought it would be cool for researchers to share

these experiment histories with colleagues so that they can learn from

what worked and didn’t work during experimental trials.

Year Five: Production 73

My gut told me that some ideas along these lines could be innova-

tive and publishable, but I couldn’t quite form a crisp research pitch

yet; my thoughts were all fuzzy and squishy. I felt stuck, so I sought

another meeting with Fernando, whom I first met during my fourth

year when I introduced IncPy and gave a talk at his UC Berkeley lab

group meeting. Fernando fit me into his schedule, and our one-hour

meeting planted the seeds for my next project idea.

∼

As soon as I mentioned my ideas about extending IncPy to record

Python-based experiment histories, Fernando launched into a passion-

ate sermon about a topic that I had never heard of but was fascinated Fernando is now one of
the leading champions
of the reproducible re-
search movement with
his IPython Notebook /
Jupyter project.

Fernando is now one of
the leading champions
of the reproducible re-
search movement with
his IPython Notebook /
Jupyter project.

by: reproducible research.

One of the cornerstones of experimental science is that colleagues

should be able to reproduce anyone’s research findings to verify, com-

pare against, and build upon them. In the past decade, more and more

scientists in diverse fields have been writing computer programs to an-

alyze data and make scientific discoveries. Thousands of scientific pa-

pers published each year are filled with quantitative findings backed by

numbers, graphs, and tables. However, the unspoken shame in mod-

ern science is that it’s nearly impossible to reproduce or verify any of

those findings, since the original computer code and data sets used to

produce those findings are rarely available. As a result, lots of papers

containing egregious errors—due to both honest mistakes and out-

right fraud—have gone unchallenged, sometimes resulting in scientific

claims that have led to human deaths. In recent years, reform-minded Some top-tier computer
science conferences are
now providing incen-
tives for authors to make
the experiments in their
papers reproducible.

Some top-tier computer
science conferences are
now providing incen-
tives for authors to make
the experiments in their
papers reproducible.

scientists such as Fernando have been trying to raise awareness for the

importance of reproducible research in the computational sciences.

Why is reproducibility so hard to achieve in practice? A few

ultra-competitive scientists purposely hide their computer code and

data to fend off potential rivals, but the majority are willing to share

code and data upon request. The main technical barrier, though, is

74 The Ph.D. Grind

that simply obtaining someone’s code and data isn’t enough to rerun

and reproduce their experiments. Everyone’s code needs a highly-

specific environment in which to run, and the environments on any

two computers—even those with the same operating system—differ inRecall my embarrassing
failure to deploy IncPy
on the UC Berkeley neu-
roscientists’ computers
back in Year Four.

Recall my embarrassing
failure to deploy IncPy
on the UC Berkeley neu-
roscientists’ computers
back in Year Four.

subtle and incompatible ways. Thus, if you send your code and data

to colleagues, they probably won’t be able to rerun your experiments.

Fernando liked my IncPy experiment history recording idea be-

cause it could also record information about the software environment

where an experiment originally occurred. Then researchers who use

Python can send their code, data, and environment to colleagues who

want to reproduce their experiments. I came out of that meeting feel-

ing pumped that I had found a concrete application for my idea. The

reproducible research motivation seemed compelling enough to formI was originally pitching
this work as an IncPy
follow-up paper, but then
I dreamed a bit bigger ...

I was originally pitching
this work as an IncPy
follow-up paper, but then
I dreamed a bit bigger ...

the storyline for a second independent IncPy-based paper submission

and dissertation contribution.

As I was jotting down more detailed notes, a moment of extreme

clarity struck: Why limit this experiment recording to only Python

programs? With some generalizations to my idea, I could make a

tool that enables the easy reproduction of computational experiments

written in any programming language! Still in a mad frenzy, I sketched

out the design for a new tool named “CDE,” which stands for Code,

Data, and Environment.

∼

When I told my idea to Dawson, he responded favorably but chal-

lenged me to think even bigger: Why limit CDE to targeting only sci-

entists’ code? Why not make it a general-purpose packaging tool for

all kinds of software programs? Those were wise words. A variety of

software creators and distributors—not only scientists—have trouble

getting other people to run their programs due to the same environ-

ment incompatibility problem, which is affectionately known as “de-

pendency hell.” Dependency hell is especially widespread on Linux-

Year Five: Production 75

based operating systems due to the multitude of semi-incompatible

Linux variants that people use; programs that run on one person’s

Linux computer are unlikely to run on someone else’s slightly differ-

ent Linux computer. With some adjustments to my original idea,

CDE could enable anybody to package up their Linux programs so

that others can run them without worrying about these environment

mismatches. I felt thrilled that CDE could potentially alleviate the

decades-old problem of dependency hell on Linux.

As my usual reality check, I scoured the Web for related work,

looking for both research prototypes and production-quality tools with

similar functionality. To my relief, there wasn’t much prior work, and

CDE stood out from the sparse competition in two important ways:

First, I designed CDE to be much easier to use than similar tools. As a

user, you create a self-contained code, data, and environment package

by simply running the program that you want to package. Thus, if

you can run a set of programs on your Linux computer, then CDE

enables others to rerun those same programs on their Linux computers

without any environment installation or configuration. Second, the

technical mechanism that CDE employs—a technique called system The main downside,
though, is that CDE
makes programs run a
bit slower than normal.
In my mind, this is the
main thing that pre-
vents it from becoming
a compelling commercial
product.

The main downside,
though, is that CDE
makes programs run a
bit slower than normal.
In my mind, this is the
main thing that pre-
vents it from becoming
a compelling commercial
product.

call redirection—enables it to be more reliable than related tools in a

variety of complex, real-world use cases.

At this point, CDE existed only as a collection of notes and design

sketches, but I sensed its potential when I realized that it was con-

ceptually simpler, easier to use, and more reliable than all other tools

in existence. A part of me was shocked and paranoid: Why hasn’t

anybody else implemented this before?!? This idea seems so obvious

in retrospect! One possible reason I dreaded was that nobody had

previously built something like CDE because it was impossible to get

the details right to make it work effectively in practice. Maybe it was

one of those ideas that looked good on paper but wasn’t practically

feasible. I figured that there was no better way to find out than to try

implementing CDE myself.

76 The Ph.D. Grind

Over three intense weeks spanning October and November 2010, I

super-grinded on creating the first version of CDE. As I suspected, al-

though the research idea behind CDE was straightforward, there were

many grimy programming-related contortions required to get CDE

working on real Linux programs. I lived and breathed CDE for those

weeks, forgetting everything else in my life. I programmed day and

night, often dreaming in my sleep about the intricate details that my

code had to wrestle with. Every morning, I would wake up and jumpI’ll always miss those
purer times. In my cur-
rent job, there’s no way I
can block off three weeks
just to code non-stop!

I’ll always miss those
purer times. In my cur-
rent job, there’s no way I
can block off three weeks
just to code non-stop!

straight to programming, feeling scared that this would finally be the

day when I hit an insurmountable obstacle proving that it was, in fact,

impossible to get CDE to work. But the days kept passing, and I kept

getting closer to my first milestone: demonstrating how CDE allows

me to transfer a sophisticated scientific program between two Linux

computers and reproduce an experiment without hassle.

I felt ecstatic when, after three weeks of coffee-fueled fully-immersed

grinding, I finally got CDE working on my scientific program demo. At

that point, I knew that CDE had the potential to work on many kinds

of real-world Linux programs if I kept testing and improving its code.

I made a ten-minute video demo introducing CDE, created a project

website containing the video and a downloadable copy of CDE, and

then emailed the website link to some friends. Unbeknownst to me,

one of my friends posted the following blurb about CDE on Slashdot,Imran, who originally
made CDE famous on
Slashdot, is now Director
of Research at Counsyl,
an SF Bay Area health
technology company.

Imran, who originally
made CDE famous on
Slashdot, is now Director
of Research at Counsyl,
an SF Bay Area health
technology company.

a popular online computer geek forum:

A Stanford researcher, Philip Guo, has developed a tool called

CDE to automatically package up a Linux program and all its

dependencies (including system-level libraries, fonts, etc!) so

that it can be run out of the box on another Linux machine

without a lot of complicated work setting up libraries and pro-

gram versions or dealing with dependency version hell. He’s got

binaries, source code, and a screencast up. Looks to be really

useful for large cluster/cloud deployments as well as program

sharing.

http://www.pgbovine.net/cde.html
http://www.pgbovine.net/cde.html

Year Five: Production 77

Within 24 hours, the Slashdot forum thread had hundreds of mes- IncPy had only three real
users, and overnight CDE
suddenly got dozens of
users. I was hooked!

IncPy had only three real
users, and overnight CDE
suddenly got dozens of
users. I was hooked!

sages, and I began receiving dozens of emails from Linux enthusiasts

around the world who downloaded and tried CDE, including gems

such as: “i just wanted to tell u that U ROCK! i’m really impressed

to see this idea working. I will promote the usage of it on my linux

community hear [sic] in Tijuana, Mexico.” These unfiltered, off-the-

cuff compliments from actual users meant more to me than any fellow

researcher praising my previous ideas or papers.

∼

From a research standpoint, my mission was now accomplished: I

successfully built an initial prototype of CDE and demonstrated that

it worked on a realistic example use case. The common wisdom in

most applied engineering fields is that research prototypes such as

CDE only serve to demonstrate the feasibility of novel ideas. The job

of a researcher is to create prototypes, experimentally evaluate their

effectiveness, write papers, and then move on to the next idea. As a re-

searcher, it’s foolish to expect people to use your prototypes as though

they were real products; if your ideas are good, then professional en-

gineers might adapt them into their company’s future products. At

best, a few other research groups might use your prototypes as the

basis for building their own prototypes and then write papers citing

yours (e.g., over a dozen other university research groups have ex-

tended the Klee tool and written papers about their improvements).

But it’s almost unheard of for non-researchers to use research proto-

types in their daily work. In sum, the purpose of academic research is This is a very important
point. It’s not our job
as academics to ship
polished products; that’s
the role of companies.

This is a very important
point. It’s not our job
as academics to ship
polished products; that’s
the role of companies.

to produce validated ideas, not polished products.

Thus, the wise course of action at the time would have been to

submit a paper on CDE and then move on to generating a new idea,

implementing a new prototype, submitting a new paper, and repeating

until I had enough content to fill up a dissertation. I did submit and near the end of Year Fivenear the end of Year Five

publish two conference papers on CDE (a short introductory paper

http://www.pgbovine.net/projects/pubs/guo_usenix11_camera_ready.pdf

78 The Ph.D. Grind

and a longer follow-up paper). But rather than moving on to a new

project idea like a prudent researcher would do, I dedicated most of my

fifth year to turning CDE into a production-quality piece of software.

I had an urge to make CDE useful for as many people as possible.

I didn’t want it to languish as yet another shoddy research prototype

that barely worked well enough to publish papers. I knew my efforts

to polish up CDE wouldn’t be rewarded by the research community

and might even delay my graduation since I could’ve spent that time

developing new dissertation project ideas. But I didn’t care. SinceIt’s funny how my feel-
ings changed almost
overnight. At the begin-
ning of Year Five, I was
afraid of taking forever
to graduate and run-
ning out of funding –
i.e., becoming a zombie
grad student. But now I
didn’t care, since I was
hooked on trying to get
more users for CDE.

It’s funny how my feel-
ings changed almost
overnight. At the begin-
ning of Year Five, I was
afraid of taking forever
to graduate and run-
ning out of funding –
i.e., becoming a zombie
grad student. But now I
didn’t care, since I was
hooked on trying to get
more users for CDE.

I was still funded by fellowships for the rest of the year, I had full

freedom to spend my time as a pro bono software maintainer rather

than as a traditional researcher tied to grant funding.

Back in my fourth year, I desperately wanted people to use IncPy,

so that’s why I felt thrilled to get three measly users. Even though

almost nobody ended up using IncPy, my irrational desire to make it

into a real-world tool led me to reach out to Fernando at UC Berkeley,

and it was Fernando who inspired me to create CDE. Now at the

beginning of my fifth year in November 2010—within a few days of

having my video demo appear on the popular Slashdot website—CDE

already had dozens of users and the potential for a lot more. Judging

from early email feedback, I realized that I had created something

that people wanted to use in a variety of settings I hadn’t originally

predicted. In short, CDE struck a chord with all sorts of Linux users

who were tired of suffering from dependency hell.

∼

I spent the majority of my fifth year fixing hundreds of bugs to

make CDE work on a dizzying array of complex Linux programs; pol-

ishing up the documentation, user manual, and FAQ to make it easier

to use; exchanging emails and even a few phone calls with users from

around the world; and giving numerous talks and sending “marketing”

emails to attract new users.

http://www.pgbovine.net/projects/pubs/cde_LISA.pdf

Year Five: Production 79

At present (summer 2012), CDE has been downloaded and used Since graduating, I
haven’t maintained
CDE at all. Instead,
I’ve shifted my focus
to Online Python Tutor
(www.pythontutor.com),
my current open-source
research tool with over
one million users (over
100 times more than
CDE ever had). My
grad school experience
of getting users for CDE
taught me how to organi-
cally grow Online Python
Tutor’s user base.

Since graduating, I
haven’t maintained
CDE at all. Instead,
I’ve shifted my focus
to Online Python Tutor
(www.pythontutor.com),
my current open-source
research tool with over
one million users (over
100 times more than
CDE ever had). My
grad school experience
of getting users for CDE
taught me how to organi-
cally grow Online Python
Tutor’s user base.

by over 10,000 people. I’ve received hundreds of emails from users

with feedback, new feature requests, bug reports, and cool anecdotes.

Although this isn’t a large number of users for a commercial software

product, it’s extremely large for a free and open-source research tool

being maintained by a single grad student.

Here are some kinds of people who have emailed me thank-you

notes and anecdotes about how they used CDE to eliminate Linux

dependency hell in their daily work:

• Research scientists at NASA (Ames and JPL research centers)

• Scientists in fields such as plant biology and medical informatics

• Scientists deploying computational experiments to the European

Grid distributed computing infrastructure

• Engineers prototyping experimental code at software companies

• Open-source software creators and distributors

• Linux computer system administrators

• Linux hobbyists running software on incompatible variants of

Linux-based operating systems

• Computer security analysts at a large anti-virus company

• A volunteer programmer on the One Laptop per Child nonprofit

technology project

• Computer science Ph.D. students distributing their research pro-

totype software

• University programmers developing software such as those for

medical visualization and protein crystallography

• University teaching assistants packaging up their programming-

based class assignments

80 The Ph.D. Grind

Those few months were by far the most enjoyable period of my

Ph.D. years, even though I knew that none of my software maintenance

activities would contribute towards my dissertation. After the initial

success of CDE, I no longer cared if my graduation was delayed by

a year or more due to lack of additional publications; I got so much

satisfaction from knowing that a piece of software I had invented could

improve many people’s computing experiences.

∼

CDE also enabled me to achieve one of my long-time nerd dreams:

to give a Tech Talk at Google that was broadcast online on YouTube.

Since the beginning of grad school, I loved watching Google Tech Talks

online on a wide range of academic subjects. I dreamed of the day

when I could give such a talk, but I didn’t get my hopes up since

it seemed like Google employees invited only famous professors and

engineers—not unknown grad students—to give these talks.

One day while scouring the Web for projects related to CDE, IYet another bit of nutty
serendipity. When I
interned for him four
summers earlier, I had
no clue that our paths
would cross again in this
unexpected way.

Yet another bit of nutty
serendipity. When I
interned for him four
summers earlier, I had
no clue that our paths
would cross again in this
unexpected way.

serendipitously noticed that my former summer 2007 Google intern-

ship manager had recently published a paper in a reproducible research

workshop. I emailed him to advertise CDE as a tool for facilitating

reproducible research and to ask whether his colleagues might be in-

terested in trying it. To my pleasant surprise, he responded with a

talk invitation ending in a winking smiley face: “I took a look at your

tool. Looks interesting enough! Would you be interested in giving a

Tech Talk about it here at Google? I would certainly help organizing

and advertising. You never know how many attendees you get, could

be 100, could be none ;-)”

I spent more time preparing for my Google Tech Talk than for any

previous talk, since I knew that it would be recorded. My talk went

quite well, and afterwards a Google engineering manager (whom I hadAgain, talks lead to more
and more serendipity!
Again, talks lead to more
and more serendipity!

never met) pulled me aside to ask more detailed follow-up questions. It

turned out that he was interested in alleviating this Linux dependency

http://www.youtube.com/watch?feature=player_embedded&v=6XdwHo1BWwY

Year Five: Production 81

hell problem within the company, so that’s why he loved my talk. He

offered me an internship where I could spend the upcoming summer

working on CDE at Google.

I was flattered by his offer and took some time to deliberate. Pro-

fessors in my department usually discourage late-stage Ph.D. students

from doing internships, since they want students to focus on finishing

their dissertations. Also, at the time of my offer, I hadn’t yet pub-

lished any first-author papers for my dissertation (several papers were

under review), so I was afraid that leaving Stanford for the summer

might give Dawson the impression that I wasn’t serious about trying

to publish and graduate. However, my gut intuition was that this

was a unique and well-timed opportunity that I couldn’t turn down:

I would be paid a great salary to spend my summer continuing to This was an incredibly
rare opportunity that I’m
glad I took. Throughout
the summer, I brain-
stormed ways that I
could extend this amaz-
ing work setup after
graduation. How could I
possibly get paid to keep
working on CDE? Options
ranged from starting my
own company to getting
funded by a university
lab to maintain CDE as
research infrastructure. In
the end, I wasn’t dedi-
cated enough to take the
plunge, though.

This was an incredibly
rare opportunity that I’m
glad I took. Throughout
the summer, I brain-
stormed ways that I
could extend this amaz-
ing work setup after
graduation. How could I
possibly get paid to keep
working on CDE? Options
ranged from starting my
own company to getting
funded by a university
lab to maintain CDE as
research infrastructure. In
the end, I wasn’t dedi-
cated enough to take the
plunge, though.

work on my own open-source software project. In contrast, almost

all interns—including myself back in 2007—were expected to work on

internal company projects assigned by their managers. I talked to

Dawson about my conflicting feelings, and he was quite supportive, so

I accepted the internship offer.

I spent a super-chill summer of 2011 at Google dedicating almost

all of my workdays to improving CDE, getting new users, and finding

creative uses within Google. For part of the summer, I worked closely

with another Google engineer who found CDE useful for his own work,

which was a great impetus for me to fix additional bugs and to improve

the documentation. By this point, I was no longer developing new

CDE-related research ideas: I was just sweating the details to continue

making it work better. I finally stopped working full-time on CDE That was an awesome
carefree summer, but I
had to eventually stop
dreaming and focus on
the Ph.D. endgame.

That was an awesome
carefree summer, but I
had to eventually stop
dreaming and focus on
the Ph.D. endgame.

after my summer internship ended and my sixth year of Ph.D. began.

Out of the five projects that comprised my dissertation, CDE was

my favorite since it was a simple, elegant idea that turned into a prac-

tical tool with over 10,000 users. It was by far the least sophisticated

from a research standpoint, but it was the most satisfying to work on

due to its real-world relevance.

82 The Ph.D. Grind

∼

Back at the beginning of my fifth year—long before the IncPy,

SlopPy, and CDE papers had been published—I hatched a backup

plan in case my own projects failed. I cold-emailed Jeff, a new as-In 2013, the year after I
graduated, Jeff moved to
the University of Wash-
ington as an associate
professor.

In 2013, the year after I
graduated, Jeff moved to
the University of Wash-
ington as an associate
professor.

sistant professor in my department who shared some of my research

interests, to ask whether he was open to collaborating on a project that

might contribute to my dissertation. The two key “selling points” I

mentioned were that I had my own funding and that I wanted to aim

for a top-tier paper submission deadline for a conference that he liked.

In exchange, he needed to serve on my thesis committee.

As expected, Jeff took me up on my offer. It was a great deal for

him since our motivations were well-aligned: I was a senior student

who needed to publish to graduate, and he was an assistant professor

who needed to publish to earn tenure. Even better, he didn’t need to

fund me from his grants. And best of all, I was open to working on

whatever project he wanted, since my primary solo projects already

gave me the independence that I craved.

I was hedging my bets with this plan: If my IncPy, SlopPy, and

CDE projects couldn’t get published, then at least I would still have a

“legitimate” professor-sanctioned project with Jeff, who was now one

of my thesis committee members. Jeff and I decided that the best

strategy was for me to build upon an interactive data reformatting

tool called Wrangler that one of his other students created last year.

Towards the end of my fifth year, I took a break from CDE and

spent 2.5 months creating some new extensions to Wrangler. My en-

hanced version was called “ProWrangler,” which stands for Proactive

Wrangler . After implementing the ProWrangler prototype and eval-

uating its efficacy with controlled user testing on fellow students, I

wrote up a paper submission to a top-tier HCI conference with theMy three coauthors on
that paper – Sean, Joe,
and Jeff – were the
original Wranglers. In
2012, they co-founded a
startup, Trifacta, to turn
Wrangler into a product.
So far they’ve raised $41
million in funding.

My three coauthors on
that paper – Sean, Joe,
and Jeff – were the
original Wranglers. In
2012, they co-founded a
startup, Trifacta, to turn
Wrangler into a product.
So far they’ve raised $41
million in funding.

help of Jeff and the other creators of the original Wrangler tool.

In the midst of my summer 2011 Google internship, I received the

happy news that our ProWrangler paper had been accepted with great

http://www.pgbovine.net/projects/pubs/prowrangler_uist11_camera_ready.pdf

Year Five: Production 83

reviews. By far the biggest contributor to our success was Jeff’s amaz-

ing job at writing both our paper’s introduction and the interpretation

of our evaluation results. Our user testing had failed to show the pro-

ductivity improvement effects that we originally hoped to see, so I was

afraid that our paper would be rejected for sure. But miraculously,

Jeff’s technical writing and argument framing skills turned that near-

defeat into a surprise victory. The reviewers loved how we honestly

acknowledged the failures of our evaluation and extracted valuable in-

sights from them. Without a doubt, our paper would have never been

accepted if not for Jeff’s rhetorical expertise. He had a lot of practice,

though. Back when he was a Ph.D. student, Jeff published 19 papers Also, Jeff was known
as a Ph.D. student who
built software that lots of
people used, so I was in-
spired by that as well. I
actually used his Prefuse
visualization toolkit back
in Year Two when I was
doing empirical software
engineering research.

Also, Jeff was known
as a Ph.D. student who
built software that lots of
people used, so I was in-
spired by that as well. I
actually used his Prefuse
visualization toolkit back
in Year Two when I was
doing empirical software
engineering research.

mostly in top-tier conferences, which is five to ten times more than

typical computer science Ph.D. students. That’s the sort of intensity

required to get a faculty job at a top-tier university like Stanford.

∼

Throughout my fifth year, I had to carefully split my time be-

tween developing new ideas, implementing prototypes, and submitting,

revising, and resubmitting papers for four projects—IncPy, SlopPy,

CDE, and ProWrangler—whose relevant conference submission dead-

lines were spread throughout the year. Even though I spent a lot of

time nurturing CDE, I had to switch to focusing on other projects

whenever deadlines arose. By summer 2011, all four projects were This was by far the most
action-packed year of
my Ph.D. The change
from start to end was
unbelievable. Twelve
months prior, I was
deathly afraid of an em-
barrassing zero-paper
shut-out, and now I had
four papers published for
my dissertation.

This was by far the most
action-packed year of
my Ph.D. The change
from start to end was
unbelievable. Twelve
months prior, I was
deathly afraid of an em-
barrassing zero-paper
shut-out, and now I had
four papers published for
my dissertation.

successfully published, usually after several rounds of paper revisions.

I felt relieved that my intricate planning had paid off and that a full

dissertation now seemed almost within reach.

84 The Ph.D. Grind

Year Six: Endgame

At the end of my fifth year—right before I went to Google for the

summer—I met with Dawson and asked him what it would take for

me to graduate within the next year. At the time, IncPy and CDE

were published as second-tier conference papers, SlopPy was a work-

shop paper, and the ProWrangler paper submission was under review.

Dawson expressed concerns that my publication record still wasn’t

sufficient to graduate and that I needed one more substantive contri-

bution to round out my dissertation. His expectations seemed reason-

able, so my plan was to return to Stanford in the fall and spend a

few months working on new research that could complete my disser-

tation. My fear, though, was that I was already exhausted from my

past year of super-grinding and had no new project ideas brewing. So

I went into scheming mode once again, thinking of ways to get that

final as-yet-unknown piece of work that would enable me to graduate.

As part of my strategy, I also wanted to find a third (and final) I actually already had a
third committee member
on paper, but I wasn’t
working on a project
with her so couldn’t
count on her to vouch
strongly for me. Ideally
I wanted a third member
with whom I actively
worked on research.

I actually already had a
third committee member
on paper, but I wasn’t
working on a project
with her so couldn’t
count on her to vouch
strongly for me. Ideally
I wanted a third member
with whom I actively
worked on research.

thesis committee member who could strongly vouch for my gradua-

tion case. Most Ph.D. students in my department don’t need to do

so much planning because they work on advisor-sanctioned projects.

They don’t stress about who their other two thesis committee mem-

bers are since their advisor vouches for them and the other members

usually agree. However, my situation was unique since I hadn’t been

working on projects that Dawson was passionate about, so I couldn’t

count on him to wholeheartedly endorse my work. Having Jeff on my

85

86 The Ph.D. Grind

committee helped since he was personally invested in our ProWrangler

project and could vouch for its legitimacy. But I still needed one more

committee member to support my graduation case.

I first emailed Tom, my former MSR manager, and pitched him

on the idea of me spending a few months in the fall of 2011 interning

at MSR and doing a new project that could contribute towards my

dissertation. I wanted him to be on my thesis committee so that I

could also include the three papers I published with him from my

summer 2009 internship work in my dissertation. Unfortunately, he

didn’t seem enthusiastic about the idea, so I didn’t push further.

I then raised the possibility of extending SlopPy from a workshop

paper into a full-fledged conference paper so that it could “count” as

a more substantive dissertation contribution. Back in my fifth year,

I talked with Martin, an MIT professor whose influential paper di-

rectly inspired SlopPy, about working together to extend SlopPy intoGuess who was a co-
author on Martin’s orig-
inal paper? Cristi, co-
creator of Klee!

Guess who was a co-
author on Martin’s orig-
inal paper? Cristi, co-
creator of Klee!

a conference paper. He was interested in collaborating, but the timing

didn’t work out since I was busy with CDE and ProWrangler during

the latter part of that year. But now, I figured that if I could spend

a few months in the beginning of my sixth year working with Martin

and have him serve on my thesis committee, then that could be my

ticket to graduation. Dawson liked this plan, since (unsurprisingly)

he had thoughts about how to combine Klee-like ideas with SlopPy. I

planned to email Martin in midsummer to propose this collaboration,

but by then, another better opportunity had come along so I no longer

pursued this one.

As I began my final summer internship at Google, I looked forward

to spending three carefree months polishing up CDE, but I felt a bit

anxious because graduation wasn’t yet guaranteed upon my return

to campus. I needed one more burst of inspiration, and it ended up

coming from an unexpected source.

∼

Year Six: Endgame 87

In summer 2011, I finally made up my mind to “retire” from This was probably the
most confusing section
of the book for many
readers, since I ended
up returning to academia
only a year after grad-
uating! Why I decided
to do so could fill up
another whole book :)

This was probably the
most confusing section
of the book for many
readers, since I ended
up returning to academia
only a year after grad-
uating! Why I decided
to do so could fill up
another whole book :)

academia after graduation: I didn’t know what I was going to do

for a career, but I wasn’t planning to apply for tenure-track university

faculty jobs in the upcoming year.

I made this decision for two main reasons: First, I sensed that

my current publication record wasn’t impressive enough to earn me a

respectable tenure-track faculty job. My hunch was confirmed months

later when I saw that, sadly, fellow students with slightly superior

publication records still didn’t get any job offers. Of course, I could

always try to work as a postdoc (temporary postdoctoral researcher)

for a few years, publish more papers, and then reapply to faculty jobs.

But the second and more important reason makes doing a postdoc

meaningless for me: The kinds of research topics I’m deeply passion-

ate about aren’t very amenable to winning grant funding, because When I started my fac-
ulty career in 2014, this
was by far my biggest
fear. So I carefully
switched to a new re-
search area that was po-
tentially more fundable.

When I started my fac-
ulty career in 2014, this
was by far my biggest
fear. So I carefully
switched to a new re-
search area that was po-
tentially more fundable.

they aren’t well-accepted by today’s academic establishment. With-

out grants, it’s impossible to pay for students. And without motivated

students to grind through the tough manual labor, it’s impossible to

get respectable publications. And without a significant number of

publications each year, it’s impossible to get tenure. Even if I do

earn tenure, I would still need new grants to pay for new students to

help me implement my ideas; the funding cycle never ends. Given my

research interests, I wasn’t emotionally prepared to fight the uphill

battles required to get my proposals taken seriously by grant funding

agencies. I had a hard enough time convincing peer-reviewers to ac-

cept my papers; grant reviewers will likely be even less sympathetic

since they are the gatekeepers to millions of dollars and would rather

hand the money to colleagues who are doing more mainstream types

of computer science research.

I had been considering leaving academia for quite a few years,

but I now felt that I had justified reasons for doing so: I understood

enough about how the “academic game” worked in computer science

to know that I didn’t want to keep playing it. I summarized my

88 The Ph.D. Grind

feelings in an email to a friend who had recently started her job as an

assistant professor: “I discovered over the past 5 years that I love beingEven though I obviously
feel differently now, this
sentence captured exactly
how I felt back then.
I couldn’t wait for the
grind to be over.

Even though I obviously
feel differently now, this
sentence captured exactly
how I felt back then.
I couldn’t wait for the
grind to be over.

a spectator of research, but the burden of being a continual producer

of new research is just too great for me.”

Since my mother is a wildly successful professor and my father also

deeply respects academia, it was hard for me to tell them my decision.

I didn’t think they truly understood my rationale; I was afraid that

they felt I was giving up and selling myself short when in reality,

becoming a professor hadn’t been a real goal of mine for years. One of

the claimed benefits of academia is the allure of creative freedom, but

my decision to leave academia actually freed up my mind to become

even more creative in pursuing my true professional passions, both

during my final year of grad school and in searching for a new career.Ironically, this search
for a new career would
simply lead me back into
academia as a professor.

Ironically, this search
for a new career would
simply lead me back into
academia as a professor.

∼

The immediate impact of my decision to quit academia was that I

didn’t need to worry about “networking” at the three academic con-

ferences I attended that summer, where I gave talks on IncPy, SlopPy,

and CDE. Academic conferences are filled with senior Ph.D. students,At one of these con-
ferences, I randomly
chatted with John, a
professor from the Uni-
versity of Utah who was
the keynote speaker. He
later wrote a very kind
blog post that made
The Ph.D. Grind popular
amongst professors, and
then gave me pragmatic
advice about returning
to academia myself. This
all happened because
I didn’t care to be in
academia anymore at the
time and just chatted
with whomever I felt like
at that conference with-
out trying to strategically
schmooze. Life is funny.

At one of these con-
ferences, I randomly
chatted with John, a
professor from the Uni-
versity of Utah who was
the keynote speaker. He
later wrote a very kind
blog post that made
The Ph.D. Grind popular
amongst professors, and
then gave me pragmatic
advice about returning
to academia myself. This
all happened because
I didn’t care to be in
academia anymore at the
time and just chatted
with whomever I felt like
at that conference with-
out trying to strategically
schmooze. Life is funny.

postdocs, and pre-tenure professors schmoozing like crazy in attempts

to impress their senior colleagues. For these junior researchers, profes-

sional networking at conferences is a serious full-time job, since their

budding careers and academic reputations depend upon excelling at

it. But since I was getting out of this academic game, I didn’t care at

all and enjoyed myself without being nervous or calculating.

During a break between sessions at one of the conferences, I spotted

Margo sitting by herself working on her laptop. Recall that I had

met Margo during my fourth year at the San Jose workshop where I

presented my original IncPy paper. I debated whether to approach her

and to reintroduce myself. A part of me was afraid that she wouldn’t

remember me and also that I wouldn’t have anything interesting to

say. But since I had no real schmoozing agenda due to my imminent

Year Six: Endgame 89

“retirement” from academia, I had nothing to lose if the conversation Margo would later play a
pivotal role in getting me
a job as a professor. But
if I had originally wanted
a job as a professor back
then, then I would’ve felt
too self-conscious and
afraid to approach her
in the first place, which
would lessen my even-
tual chances of getting
that job. So in the end,
it was because I didn’t
want a job as a professor
that I ended up getting
one. Crazy!

Margo would later play a
pivotal role in getting me
a job as a professor. But
if I had originally wanted
a job as a professor back
then, then I would’ve felt
too self-conscious and
afraid to approach her
in the first place, which
would lessen my even-
tual chances of getting
that job. So in the end,
it was because I didn’t
want a job as a professor
that I ended up getting
one. Crazy!

ended up fizzling. So I just went up and said hello. I reminded her

about how we had previously met, and she seemed to remember me.

I briefly told her that I was about to give a talk on my new CDE

project and then needed to catch a flight back to California. We

had a quick five-minute chat about CDE, and then I had to run to

give my talk. After returning home that night, I emailed her a quick

follow-up message with a link to the CDE project webpage in case

her students were interested in playing with it for their research. This

was my standard polite message when advertising CDE to professional

colleagues, so I didn’t really expect her to follow up.

Two weeks later, I received a surprise email from Margo saying

that she had been talking about me with her student Elaine. The two Elaine recently finished
her Ph.D. at Harvard and
is now a postdoc at UC
Berkeley.

Elaine recently finished
her Ph.D. at Harvard and
is now a postdoc at UC
Berkeley.

of them wanted me to come work with them at Harvard for a few years

as a postdoc after completing my Ph.D. The broader research themes

surrounding my IncPy and CDE projects resonated with Margo’s in-

terests in creating tools to help make computational researchers more

productive. I was very flattered by her offer, but the opportunity

didn’t make sense since I had already decided to retire from academia.

It would be useless for me to do a postdoc, since the main purpose of

a postdoc is to boost one’s resume to improve the chances of getting

a university faculty job.

And then inspiration struck again. Since I was in dire need of one

more substantive project and thesis committee member before I could

graduate, I made the following counterproposal to Margo: Instead of

doing a postdoc after my Ph.D., I asked whether I could visit Harvard

for four months in the fall of 2011 to work on a project with her. We

could submit a paper to a conference in January 2012 and then in-

clude that project as the final portion of my dissertation. I also asked

whether she could serve as the final member of my thesis commit-

tee. Margo liked this idea but didn’t have sufficient grant funding for

me, since she needed to fund her own students. I talked to Dawson,

http://www.pgbovine.net/cde.html

90 The Ph.D. Grind

and he was generously willing to fund me for those months using hisI am very grateful to
Dawson for funding
me during that crucial
semester. My fellowship
had already expired, so
in theory my time was
up. But Dawson gave
me the much-needed fi-
nancial boost to finish
the grind with dignity.
That was very kind.

I am very grateful to
Dawson for funding
me during that crucial
semester. My fellowship
had already expired, so
in theory my time was
up. But Dawson gave
me the much-needed fi-
nancial boost to finish
the grind with dignity.
That was very kind.

grants even though I wasn’t working on Klee (my fellowship had al-

ready expired). Margo happily agreed to this arrangement, and after

my summer internship ended in September 2011, I moved to Boston,

Massachusetts to begin my sixth and final year of grad school.

This final grad school adventure would not have been possible with-

out me actively seizing opportunities that I was fortunate enough to

have been given. If Robert hadn’t told me about the San Jose work-

shop two years ago, if I hadn’t submitted and presented my IncPy

paper there, if Margo hadn’t liked my paper and introduced me to

Elaine, if I hadn’t kept in touch with Elaine, if I hadn’t spontaneouslyIt’s easy to look back to
weave a crisp story of
success, but in reality I
tried many, many things
like this, most of which
never panned out.

It’s easy to look back to
weave a crisp story of
success, but in reality I
tried many, many things
like this, most of which
never panned out.

said hello to Margo again at last summer’s conference where I pre-

sented CDE, if she didn’t send me a gracious follow-up email, and

if I didn’t take a risk with my unusual counterproposal to her, then

I would have still been back at Stanford struggling to find one last

project and thesis committee member.

∼

I had an amazingly fun and productive four months in Boston as a

visiting researcher at Harvard. The change of scenery was refreshing: I

could focus intensely on research without the usual errands of life backI’ll probably never again
have a time in my life
when I can focus so
intensely on the grind. It
was so pure and carefree.

I’ll probably never again
have a time in my life
when I can focus so
intensely on the grind. It
was so pure and carefree.

home. Elaine helped me find a wonderful studio apartment within a

five-minute walk to my office, and I could easily buy food both on

campus and in nearby Harvard Square. This ideal living arrangement

enabled me to concentrate on my work without any distractions.

I spent my first month mostly socializing with old college friends

since my alma mater, MIT, was located right near Harvard. I also met

with Margo a few times to discuss potential research ideas. She was

open to me working on my own project under her loose supervision,

so I had nearly full intellectual freedom. However, I took a pragmatic

approach to my brainstorming since I wanted her to be excited about

my project and to strongly support its inclusion in my dissertation.

Year Six: Endgame 91

Thus, I read some of her recent papers and grant applications to get a That was my first time
ever reading a grant
proposal. It looked so
foreign to me. But now I
write grants all the time,
so it feels like a normal
part of life.

That was my first time
ever reading a grant
proposal. It looked so
foreign to me. But now I
write grants all the time,
so it feels like a normal
part of life.

sense of her research philosophy so that I could cater my ideas towards

her tastes. By now, I understood the importance of aligning with the

subjective preferences of senior collaborators (and paper reviewers),

even when doing research in supposedly objective technical fields.

After batting around a few ideas, I came up with something that

Margo loved: a tool that monitors researchers’ computer-based activ-

ities and helps them organize and take notes on their experiments.

It was an innovative twist on the traditional electronic lab notebook.

Margo jokingly suggested the temporary codename “BurritoBook” to

describe our proposed tool, since it seamlessly wraps many layers of

activity monitoring around the user’s normal workflow. Elaine later

shortened the name to “Burrito,” which grew on me and eventually

became the official project name.

At the time, I thought that my Burrito idea arose spontaneously

from combining my hunches with Margo’s preferences, but after look-

ing back at old notes, I realized that similar ideas had been brewing

in my head for several years. I started thinking about Burrito-like

ideas as early as my second year of grad school when I wanted to

monitor how people performed programming, and more concretely at

the beginning of my fifth year when I wanted to extend IncPy to

record Python-based experiment histories. Throughout grad school, I

had been keeping a research lab notebook in various ad-hoc formats

to document the process of building prototypes and running experi-

ments, so I personally felt the pain of notetaking-related inefficiencies.

Finally, although I wasn’t a real HCI (Human-Computer Interaction)

researcher, my HCI training with Scott and Joel during my second

year and with Jeff during my fifth year gave me a keen sensitivity to

user needs that greatly influenced the design of Burrito.

I spent a few weeks sketching out high-level plans for Burrito and

discussing preliminary design details with Margo. Many refinements to

my initial idea came from observing computational researchers at work

92 The Ph.D. Grind

and interviewing them about the challenges they faced in managing

their multitude of experiment notes, code, and data files; most of my

observation subjects were Elaine’s friends who worked in various MIT

and Harvard science labs. I also received useful early-stage feedback

from giving a talk on my Burrito proposal at a lab group meeting led

by Rob, the MIT professor I met at the beginning of my second yearRob led such vibrant and
inspiring group meetings.
I had no idea at the time
that I would be returning
to his group as a postdoc
just two short years later.

Rob led such vibrant and
inspiring group meetings.
I had no idea at the time
that I would be returning
to his group as a postdoc
just two short years later.

who encouraged me to pursue my HCI interests with Scott and Joel.

∼

And then social time was over; it was time to grind. In early

November 2011, I turned into a programming beast for the final time

in grad school to transform my Burrito idea into a working prototype.

I did 72 consecutive days of programming with only 5 days of breaksI no longer have the
stamina to attempt this.
I no longer have the
stamina to attempt this.

spread intermittently throughout the 2.5-month sprint. This period

was the longest I had ever sustained an almost-painful level of nonstop

intensity thus far. My initial CDE burst during my fifth year was only

21 days of grinding, and this burst was over three times as long. I

worked straight through Thanksgiving, Christmas, and New Year’s

Eve, relentlessly focused on my goal of getting Burrito working well

enough to submit a conference paper by the middle of January 2012.

For those few months, I morphed into an antisocial grump who

shunned all distraction and became deeply immersed in my craft. All

I thought about was computer code; I could barely speak in coherent

English sentences except during my weekly progress meetings with

Margo. Even though I appeared and acted subhuman (i.e., an un-

shaven disheveled mess), my emotional state was blissful. I was pro-

gramming and debugging for over ten hours per day, but my mind

was quite relaxed since my technical skills were well-calibrated for theThe epitome of flow.The epitome of flow.

challenges I faced. By now, I had accumulated enough experience in

designing, implementing, and “marketing” research prototypes that

I was confident in my abilities to make this project work. I received

wonderful feedback and support from Margo along the way, so I sensed

Year Six: Endgame 93

that she would strongly endorse the inclusion of Burrito in my disserta-

tion. After years of grinding on uncertain and failed projects earlier in

grad school, I now felt invigorated working intensely towards a target

that I knew I could feasibly achieve.

By mid-January 2012, the Burrito prototype was in fine shape, so

we ran an informal evaluation, wrote up a paper, and submitted it to

the conference as planned. I took a few days off to return to normal

human mode, said goodbye to my Boston friends, and flew back to

California for the Ph.D. endgame.

∼

The popular view of how a Ph.D. dissertation arises is that a stu-

dent comes up with some inspired intellectual idea in a brilliant flash

of insight and then spends a few years writing a giant treatise while

sipping hundreds of lattes and cappuccinos. In many science and en-

gineering fields, this perception is totally inaccurate: The “writing” is

simply combining one’s published papers together into a single docu-

ment and surrounding their contents with introductory and concluding

chapters. All of the years of sweaty labor has already been done by

the time a student sits down to “write” their dissertation document.

In my department, the most important milestone in a Ph.D. stu-

dent’s career is when their advisor gives the thumbs up to begin the

dissertation writing process. This gesture signals that the student has

done enough work—usually publishing two to four conference papers

on one coherent theme—and deserves to graduate within a few months.

When I returned to Stanford in January 2012, my goal was to se-

cure that vital thumbs up from Dawson as soon as possible. I wrote up

a short document presenting evidence for why I felt I had done enough

work to graduate. My argument was simple: I created five innova-

tive software tools to improve the workflow of computational research

programmers—IncPy, SlopPy, CDE, ProWrangler, and Burrito—and

published 1 top-tier conference paper, 3 second-tier conference papers,

94 The Ph.D. Grind

and 3 workshop papers from my body of work (the Burrito conference

submission ended up being rejected, so we resubmitted and published

in a workshop). As an added bonus, my two other thesis committee

members, Jeff and Margo, could also vouch for my graduation case

since I had done successful projects with them (ProWrangler and Bur-

rito, respectively). I emailed the document to Dawson and nervously

awaited his response. I thought my case was pretty strong, but I had

no idea whether he expected me to do more work before allowing me

to graduate. To my great relief, he quickly gave me the thumbs up,Huge, huge, HUGE sigh
of relief at that point.
All that remained was
just going through the
motions to finish up.

Huge, huge, HUGE sigh
of relief at that point.
All that remained was
just going through the
motions to finish up.

and that’s when I knew that I was essentially done with grad school.

I spent the next two months combining all of my papers together

into a 230-page dissertation document entitled Software Tools to Fa-

cilitate Research Programming. Here is the abstract (summary) from

the first page of my dissertation:

Research programming is a type of programming activity where

the goal is to write computer programs to obtain insights from

data. Millions of professionals in fields ranging from science,

engineering, business, finance, public policy, and journalism, as

well as numerous students and computer hobbyists, all perform

research programming on a daily basis.

My thesis is that by understanding the unique challenges faced

during research programming, it becomes possible to apply tech-

niques from dynamic program analysis, mixed-initiative recom-

mendation systems, and OS-level tracing to make research pro-

grammers more productive.

This dissertation characterizes the research programming pro-

cess, describes typical challenges faced by research program-

mers, and presents five software tools that I have developed to

address some key challenges. 1.) ProWrangler is an interac-

tive graphical tool that helps research programmers reformat

and clean data prior to analysis. 2.) IncPy is a Python in-

terpreter that speeds up the data analysis scripting cycle and

helps programmers manage code and data dependencies. 3.)

http://www.pgbovine.net/projects/pubs/guo_burrito_tapp_2012.pdf

Year Six: Endgame 95

SlopPy is a Python interpreter that automatically makes ex-

isting scripts error-tolerant, thereby also speeding up the data

analysis scripting cycle. 4.) Burrito is a Linux-based system

that helps programmers organize, annotate, and recall past in-

sights about their experiments. 5.) CDE is a software packaging

tool that makes it easy to deploy, archive, and share research

code. Taken together, these five tools enable research program-

mers to iterate and potentially discover insights faster by off-

loading the burdens of data management and provenance to the

computer.

I spent a lot of effort crafting new introductory and concluding Margo actually nudged
me to do this. It later
paid off beautifully when
I crafted the story for my
faculty job applications
and talks. But back then,
I never thought that I’d
ever refer back to what
I wrote in those final
weeks.

Margo actually nudged
me to do this. It later
paid off beautifully when
I crafted the story for my
faculty job applications
and talks. But back then,
I never thought that I’d
ever refer back to what
I wrote in those final
weeks.

chapters to turn my dissertation into more than merely a description of

five separate tools that I had built over the past few years. Throughout

the writing process, Jeff and Margo gave me great feedback on how

to frame my research contributions in a more substantive intellectual

light. Even though I know that few people will end up reading my

dissertation—the constituent papers are far more accessible—it felt

satisfying to collect all of my ideas, insights, tool descriptions, and

evaluation results together into one cohesive document.

∼

I scheduled my oral defense for Monday, April 23, 2012. The

biggest challenge was finding a two-hour time slot where five busy

professors (my three thesis committee members plus two additional

oral committee members) were available. Margo was visiting Cali-

fornia for a conference during that week, so I planned around her

schedule. In my department, the format of the oral defense is that

the student gives a one-hour public talk summarizing their disserta-

tion research, and then there is a one-hour private session where the

committee asks probing questions. Afterwards, the committee votes

to either pass or fail the student. In reality, almost nobody fails their

defense unless they act totally moronic: The committee will usually

http://www.pgbovine.net/projects/pubs/guo_phd_dissertation.pdf

96 The Ph.D. Grind

have read through and approved a student’s dissertation before they

let that student defend, so there should be no surprises.

I didn’t have time to present all five projects during my oral defense

talk, so I chose to present three projects, one that I did with each mem-

ber of my thesis committee: IncPy with Dawson, ProWrangler with

Jeff, and Burrito with Margo. Most Ph.D. students publish papers

with only their advisor, so it was a rare honor to get to talk about

research that I did with all three of my committee members. I was

also happy that many of my friends and former colleagues—including

Scott, Joel, Peter, Robert, Greg, and Fernando—attended my defense.Robert graduated shortly
after me and then started
his own educational tech-
nology company, which
was completely unrelated
to his Ph.D. dissertation
on data provenance.

Robert graduated shortly
after me and then started
his own educational tech-
nology company, which
was completely unrelated
to his Ph.D. dissertation
on data provenance.

Even though I had given dozens of academic talks throughout grad

school, I was more tense than usual during my defense, perhaps be-

cause I knew almost everybody in the audience. Strangely, I feel much

more at ease giving talks to rooms filled with strangers rather than

familiar faces. The private session wasn’t as grueling as I had antic-

ipated, but my committee did raise some questions and suggestions

that ended up improving my dissertation.

After I passed, my committee and friends all gave me polite con-

gratulations, which was a nice but expected gesture. The compliment

that I will cherish the most came from a senior professor with whom I

had only spoken once. I was a bit surprised to see him at my defense

since I didn’t think he would be interested in the topic. After my de-

fense, he sent me the following email praising my talk: “I just wanted

to say that I really enjoyed it, partly because of the creativity of the

work, partly because of the well-prepared talk, and partly because I

had spent the previous year doing research programming.”

∼

Of the 26 Stanford Computer Science Department Ph.D. graduates

in my year, I consider myself fairly mediocre from an academic perspec-

tive since most of my papers were second-tier and not well-received by

Year Six: Endgame 97

the establishment. My dissertation work awkwardly straddled sev-

eral computer science subfields—Programming Languages, Human-

Computer Interaction, and Operating Systems—so it wasn’t taken

seriously by the top people in any one particular subfield.

Despite lack of mainstream acceptance, I still thought that my

Ph.D. ended successfully because I was able to carry several of my

own ideas to fruition and graduate with a dissertation that I was very

proud of. I took a highly entrepreneurial approach to my Ph.D.—

opportunistically seeking out projects and collaborators, walking a

fine line between being unconventional and conforming enough to get

my papers published. I feel extremely lucky to have been able to take

charge of my Ph.D. career in creative ways; I wouldn’t have had nearly My final year was
funded by Dawson’s
grants and by being a
teaching assistant.

My final year was
funded by Dawson’s
grants and by being a
teaching assistant.

as much freedom without the fellowships that funded five out of my

six years at Stanford.

In the end, like most Ph.D. dissertations, mine expanded the bound-

aries of human knowledge by a teeny microscopic amount. The five

prototype tools that I built contain some interesting ideas that can

be adapted by future researchers. In fact, I will be honored if future

researchers cite my papers as examples of shoddy primitive hacks and

argue for why their techniques are far superior. That’s how research

marches forward bit by bit: Each successive generation builds upon

the ideas of the previous one.

However, to me, the most significant contribution of my disser-

tation wasn’t those specific prototype tools. Rather, it was that, to

the best of my knowledge, I was one of the first computer science

Ph.D. students to identify a pervasive problem—the lack of software

tools catered to the needs of a large and growing population of compu- sometimes now called
data scientists
sometimes now called
data scientists

tational research programmers—and to offer some early-stage proto-

type solutions that others can improve upon. I believe that these ideas

will become more important in the upcoming decades, but since I’m

retiring from academia, I won’t be around to directly promote them. I just un-retired!I just un-retired!

98 The Ph.D. Grind

Since my dissertation topic is far from being mainstream, any ju-

nior professor or scientist who tries to build their academic career

upon its ideas will struggle to gain the respect of grant funding agen-These ideas grew fund-
able the year after I
graduated, riding on
the Big Data and data
science movements. But
by then, I had already
shifted to other interests.

These ideas grew fund-
able the year after I
graduated, riding on
the Big Data and data
science movements. But
by then, I had already
shifted to other interests.

cies, which are the gatekeepers to launching new projects, and their

senior colleagues, who are the gatekeepers to publication and tenure.

I will be more than happy to assist anybody who wants to take on

this noble fight, but I’m not brave enough to stake my own career on

it. Instead, I plan to now pursue a completely different professional

passion, which might someday be the subject of a future book :-)That plan lasted for less
than a year.
That plan lasted for less
than a year.

∼

In preparation for writing this memoir, I dug through lots of my

old research notes. One day, I found the following snippet about a

topic that I was interested in investigating:

Research into software development tools for non-software en-

gineers, but rather for scientists, engineers, and researchers

who need to program for their jobs – they’re not gonna care

about specs., model checking, etc. – they just want pragmatic,

lightweight, and conceptually-simple tools that they can pick

up quickly and use all the time.

The shocking thing about this note is that I wrote it six years ago in

the summer of 2006, right before I started the Ph.D. program at Stan-

ford. It’s been a long, circuitous, and unpredictable journey, but I’m

incredibly grateful that I was able to turn this broad topic—one out

of dozens that caught my interest over the years—into my Ph.D. dis-

sertation. This accomplishment wouldn’t have been possible withoutThat’s all for the mar-
gin notes! It’s been fun
reflecting.

That’s all for the mar-
gin notes! It’s been fun
reflecting. a rare combination of great luck, personal initiative, insightful nudges

from generous people, and nearly ten thousand hours of grinding.

Epilogue

If you are not going to become a professor, then why even bother pur-

suing a Ph.D.? This frequently-asked question is important because

most Ph.D. graduates aren’t able to get the same jobs as their univer-

sity mentors and role models—tenure-track professors. There simply

aren’t enough available faculty positions, so most Ph.D. students are

directly training for a job that they will never get. (Imagine how dis-

concerting it would be if medical or law school graduates couldn’t get

jobs as doctors or lawyers, respectively.)

So why would anyone spend six or more years doing a Ph.D. when

they aren’t going to become professors? Everyone has different mo-

tivations, but one possible answer is that a Ph.D. program provides

a safe environment for certain types of people to push themselves far

beyond their mental limits and then emerge stronger as a result. For

example, my six years of Ph.D. training have made me wiser, savvier,

grittier, and more steely, focused, creative, eloquent, perceptive, and

professionally effective than I was as a fresh college graduate. (Two ob-

vious caveats: Not every Ph.D. student received these benefits—many

grew jaded and burned-out from their struggles. Also, lots of people

cultivate these positive traits without going through a Ph.D. program.)

Here is an imperfect analogy: Why would anyone spend years train-

ing to excel in a sport such as the Ironman Triathlon—a grueling race

consisting of a 2.4-mile swim, 112-mile bike ride, and a 26.2-mile

run—when they aren’t going to become professional athletes? In short,

99

100 The Ph.D. Grind

this experience pushes people far beyond their physical limits and en-

ables them to emerge stronger as a result. In some ways, doing a

Ph.D. is the intellectual equivalent of intense athletic training.

∼

Here are twenty of the most memorable lessons that I’ve learned

throughout my Ph.D. years. My purpose in sharing is not to pro-

vide unsolicited advice to students, since everyone’s Ph.D. experience

differs greatly; nor is it to encourage people to pursue a Ph.D., since

these lessons can come from many sources. Rather, this section merely

serves as a summary of what I gained from working towards my Ph.D.

1. Results trump intentions: Nobody questions someone’s inten-

tions if they produce good results. I didn’t have so-called pure

intellectual motivations during grad school: I started a Ph.D. be-

cause I wasn’t satisfied with engineering jobs, pressured myself to

invent my own projects out of fear of not graduating on time, and

helped out on HCI projects with Scott, Joel, and Jeff to hedge my

bets. But I succeeded because I produced results: five prototype

tools and a dozen published papers. Throughout this process, I de-

veloped strong passions for and pride in my own work. In contrast,

I know students with the most idealistic of intentions—dreamy and

passionate hopes of revolutionizing their field—who produce few

results and then end up disillusioned.

2. Outputs trump inputs: The only way to earn a Ph.D. is by

successfully producing research outputs (e.g., published papers),

not merely by consuming inputs from taking classes or reading other

people’s papers. Of course, it’s absolutely necessary to consume

before one can produce, but it’s all too easy to over-consume. I fell

into this trap at the end of my first year when I read hundreds of

research papers in a vacuum—a consumption binge—without being

Epilogue 101

able to synthesize anything useful from my undirected readings.

In contrast, related work literature searches for my dissertation

projects were much more effective because my reading was tightly

directed towards clear goals: identifying competitors and adapting

good ideas into my own projects.

3. Find relevant information: My Ph.D. training has taught me

how to effectively find the most relevant information for what I

need to accomplish at each moment. Unlike traditional classroom

learning, when I’m working on research, there are no textbooks,

no lecture notes, and no instructors to provide definitive answers.

Sometimes what I need for my work is in a research paper, some-

times it’s within an ancient piece of computer code, sometimes it’s

on an obscure website, and sometimes it’s inside the mind of some-

one whom I need to track down and ask for help.

4. Create lucky opportunities: I got incredibly lucky several times

throughout grad school, culminating in getting to work with Margo

at Harvard during my final year. But these fortuitous opportunities

wouldn’t have arisen if I didn’t repeatedly put myself and my work

on display—giving talks, chatting with colleagues, asking for and

offering help, and expressing gratitude. The vast majority of my

efforts didn’t result in serendipity, but if I didn’t keep trying, then

I probably wouldn’t have gotten lucky.

5. Play the game: As a Ph.D. student, I was at the bottom of the

pecking order and in no position to change the “academic game.”

Specifically, although I dreaded getting my papers repeatedly re-

jected, I had no choice but to keep learning to play the publication

game to the best of my abilities. However, I was happy that I

played in my own unique and creative way during the second half

of grad school by pursuing more unconventional projects while still

conforming to the “rules” well enough to publish and graduate.

102 The Ph.D. Grind

6. Lead from below: By understanding the motivations and per-

sonalities of older Ph.D. students, professors, and other senior col-

leagues, I was able to lead my own initiatives even from the bottom

of the pecking order. For example, after I learned Margo’s research

tastes by reading her papers and grant applications, I came up with

a project idea (Burrito) that we were both excited about. If I were

oblivious to her interests, then it would have been much harder to

generate ideas to her liking.

7. Professors are human: While this might sound obvious, it’s all

too easy to forget that professors aren’t just relentless research-

producing machines. They’re human beings with their own tastes,

biases, interests, motivations, shortcomings, and fears. Even well-

respected science-minded intellectuals have subjective and irrational

quirks. From a student’s perspective, since professors are the gate-

keepers to publication, graduation, and future jobs, it’s important

to empathize with them both as professionals and also as people.

8. Be well-liked: I was happier and more productive when working

with people who liked me. Of course, it’s impossible to be well-

liked by all colleagues due to inevitable personality differences. In

general, I strived to seek out people with whom I naturally clicked

well and then took the time to nurture those relationships.

9. Pay some dues: It’s necessary for junior lab members to pay

their dues and be “good soldiers” rather than making presumptuous

demands from day one. As an undergraduate and master’s student

at MIT, I paid my dues by working on an advisor-approved, grant-

funded project for two and a half years rather than trying to create

my own project; I was well-rewarded with admissions into top-

ranked Ph.D. programs and two fellowships, which paid for five

years of graduate school. However, once I started at Stanford, I

paid my dues for a bit too long on the Klee project before quitting.

It took me years to recognize when to defer to authority figures and

Epilogue 103

when to selfishly push forward my own agenda.

10. Reject bad defaults: Defaults aren’t usually in the best interests

of those on the bottom (e.g., Ph.D. students), so it’s important

to know when to reject them and to ask for something different.

Of course, there’s no nefarious conspiracy against students; the

defaults are just naturally set up to benefit those in power. For ex-

ample, famous tenured professors like Dawson are easily able to get

multi-year grants to fund students to work on “default” projects

like Klee. As long as some papers get published from time to time,

then the professor and project are both viewed as successful, re-

gardless of how many students stumbled and failed along the way.

Students must judge for themselves whether their default projects

are promising, and if not, figure out how to quit gracefully.

11. Know when to quit: Quitting Klee at the end of my third year

was my most pivotal decision of grad school. If I hadn’t quit Klee,

then there would be no IncPy, no SlopPy, no CDE, no ProWrangler,

and no Burrito; there would just be three or more years of painful

incremental progress followed by a possible “pity graduation.”

12. Recover from failures: Failure is inevitable in grad school. Noth-

ing I did during my first three years made it into my dissertation,

and many paths I wandered down in my latter three years were also

dead-ends. Grad school was a safe environment to practice recov-

ering from failures, since the stakes were low compared to failing

in real jobs. In my early Ph.D. years, I would grow anxious, dis-

traught, and paralyzed over research failures. But as I matured, I

learned to channel my anger into purposeful action in what I call a

productive rage. Every rejection, doubt, and criticism spurred me

to work harder to prove the naysayers wrong. Lessons learned from

earlier failures led to successes later in grad school. For example,

my failure to shadow professional programmers at the beginning

of my second year taught me how and who to approach for these

104 The Ph.D. Grind

sorts of favors, so I later succeeded at shadowing computational

researchers to motivate my dissertation work; and my failure to get

lots of real users for IncPy taught me how to better design and

advertise my software so that I could get 10,000 users for CDE.

13. Ally with insiders: I had an easy time publishing papers when

allied with expert insiders such as Scott and Joel during my sec-

ond year, Tom during my MSR internship, and Jeff during my fifth

year. They knew all the tricks of the trade required to get pa-

pers published in their respective subfields; the five papers that I

co-wrote with these insiders were all accepted on their first submis-

sion attempts. However, struggling as an outsider—with Dawson

on empirical software measurement in my second year and then

on my solo dissertation projects—was also enriching, albeit more

frustrating due to repeated paper rejections.

14. Give many talks: I gave over two dozen research presentations

throughout my Ph.D. years, ranging from informal talks at univer-

sity lab group meetings to conference presentations in large hotel

ballrooms. The informal talks I gave at the beginning of projects

such as IncPy were useful for getting design ideas and feedback;

those I gave prior to submitting papers were useful for discovering

common criticisms that I needed to address in my papers. Also, ev-

ery talk was great practice for improving my skills in public speak-

ing and in responding to sometimes-hostile questions. Finally, talks

sometimes sparked follow-up discussions that led to serendipity: For

example, after watching my first talk on IncPy, a fellow grad stu-

dent emailed me a link to Fernando’s blog post about Python in

science; that email encouraged me to reach out to Fernando, who

would later inspire me to improve IncPy and then to invent CDE.

Over a year later, my Google Tech Talk on CDE directly led to my

super-chill summer 2011 internship.

Epilogue 105

15. Sell, sell, sell: I spent the majority of my grad school days heads-

down grinding on implementing research ideas, but I recognized

that convincingly selling my work was the key to publication, recog-

nition, and eventual graduation. Due to the ultra-competitive na-

ture of the paper publication game, what often makes the difference

between an accept and a reject decision is how well a paper’s “mar-

keting pitch” appeals to reviewers’ tastes. Thus, thousands of hours

of hard grinding would go to waste if I failed to properly pitch the

big-picture significance of my research to my target audience: se-

nior academic colleagues. More generally, many people in a field

have good ideas, so the better salespeople are more likely to get

their ideas accepted by the establishment. As a low-status grad

student, one of the most effective ways for me to “sell” my ideas

and projects was to get influential people (e.g., famous professors

such as Margo) excited enough to promote them on my behalf.

16. Generously provide help: One of my favorite characteristics of

the Ph.D. experience was that I wasn’t in competition with my

classmates; it wasn’t like if they did better, then I would do worse,

or vice versa. Therefore, many of us generously helped one another,

most notably by giving feedback on ideas and paper drafts before

they were subject to the harsher critiques of external reviewers.

17. Ask for help: Over the past six years, I became good at determin-

ing when, who, and how to ask for help. Specifically, whenever I

felt stuck, I sought experts who could help me get unstuck. Finding

help can be as simple as asking a friend in my department, or it

might require getting referrals or even cold-emailing strangers.

18. Express true gratitude: I learned to express gratitude for the

help that others have given me throughout the years. Even though

earning a Ph.D. was a mostly-solitary process, I wouldn’t have made

it without the generosity of dozens of colleagues. People feel good

when they find out that their advice or feedback led to concrete

106 The Ph.D. Grind

benefits, so I strive to acknowledge everyone’s specific contributions

whenever possible. Even a quick thank-you email goes a long way.

19. Ideas beget ideas: As I discovered at the end of my first year,

it’s nearly impossible to come up with substantive ideas in a vac-

uum. Ideas are always built upon other ideas, so it’s important to

find a solid starting point. For instance, the motivations for both

IncPy and SlopPy came from my frustrations with programming-

related inefficiencies I faced during my 2009 MSR internship. A

year later, some of my ideas for extending IncPy, mixed with Fer-

nando’s insights on reproducible research and Dawson’s mention of

Linux dependency hell, led to the creation of CDE. Also, ideas can

sometimes take years to blossom, usually after several false starts:

I started pondering Burrito-like ideas during my second year and

then at the end of my fourth, but it wasn’t until my sixth year that

I was able to solidify those fuzzy thoughts into a real project.

20. Grind hard and smart: This book is named The Ph.D. Grind

because there would be no Ph.D. without ten thousand hours of

unglamorous, hard-nosed grinding. This journey has taught me

that creative ideas mean nothing without the extreme effort to

bring them to fruition: showing up to the office, getting my butt

in the seat, grinding hard to make small but consistent progress,

taking breaks to reflect and refresh, then repeating day after day

for over two thousand consecutive days. However, grinding smart is

just as important as grinding hard. It’s sad to see students blindly

working themselves to death on tasks that won’t get favorable re-

sults: approaching a research problem from an unwise angle, using

the wrong kinds of tools, or doing useless errands. Grinding smart

requires perceptiveness, intuition, and a willingness to ask for help.

∼

Epilogue 107

I’ll end by answering a question involving the F-word: Was it fun?

Some aspects of the Ph.D. experience were very fun: Coming up

with new ideas was fun; sketching out software designs on the white-

board was fun; having coffee with colleagues to chat about ideas was

fun; hanging out with interesting people at conferences was fun; giving

talks and inciting animated discussions was fun; receiving enthusias-

tic emails from CDE users around the world was fun. But I probably

spent only a few hundred hours on those activities throughout the past

six years, which was less than five percent of my total work time.

In contrast, I spent about ten thousand hours grinding alone in

front of my computer—programming, debugging, running experiments,

wrestling with software tools, finding relevant information, and writ-

ing, editing, and rewriting research papers. Anyone who has done

creative work knows that the day-to-day grind is rarely fun: It re-

quires intense focus, rigorous discipline, keen attention to detail, high

pain tolerance, and an obsessive desire to produce great work.

So, Was it fun?

I’ll answer using another F-word: It was fun at times, but more

importantly, it was fulfilling. Fun is often frivolous, ephemeral, and

easy to obtain, but true fulfillment comes only after overcoming sig-

nificant and meaningful challenges. Pursuing a Ph.D. has been one of

the most fulfilling experiences of my life, and I feel extremely lucky to

have been given the opportunity to be creative during this time.

	Prologue
	Year One: Downfall
	Year Two: Inception
	Year Three: Relapse
	Intermission
	Year Four: Reboot
	Year Five: Production
	Year Six: Endgame
	Epilogue

